
SpyKING CIRCUS Documentation
Release 0.8.2

Pierre Yger and Olivier Marre

Jun 30, 2019

Contents

1 Introduction 3
1.1 Why using it? . 3
1.2 How to get the code . 4
1.3 Installation . 5
1.4 Configuration of MPI . 7
1.5 Release notes . 8
1.6 Future plans and contributions . 19

2 Launching the code 21
2.1 Quickstart . 21
2.2 Parameters . 23
2.3 Designing your probe file . 25
2.4 Configuration File . 29
2.5 Supported File Formats . 35
2.6 Sanity plots . 38
2.7 Processing streams of data . 41
2.8 Dealing with stimulation artefacts . 43
2.9 Automatic Merging . 45

3 Using the GUI 51
3.1 A graphical launcher . 51
3.2 Quick preview GUIs . 51
3.3 Launching the visualization GUIs . 53
3.4 Panels of the GUIs . 55
3.5 Basis of spike sorting . 57

4 Advanced Informations 63
4.1 Choosing the parameters . 63
4.2 Writing your custom file wrapper . 64
4.3 Extra steps . 69
4.4 Details of the algorithm . 71
4.5 Generated Files . 72
4.6 GUI without SpyKING CIRCUS . 77
4.7 Example scripts . 78
4.8 Launching the tests . 80
4.9 BEER estimate . 82

i

5 Known issues 87
5.1 Frequently Asked Questions . 87
5.2 Filtering . 89
5.3 Whitening . 90

6 Citations 91
6.1 How to cite SpyKING CIRCUS . 91
6.2 Publications refering to SpyKING CIRCUS . 91

ii

SpyKING CIRCUS Documentation, Release 0.8.2

The SpyKING CIRCUS is a massively parallel code to perform semi automatic spike sorting on large extra-cellular
recordings. Using a smart clustering and a greedy template matching approach, the code can solve the problem of
overlapping spikes, and has been tested both for in vitro and in vivo data, from tens of channels to up to 4225 channels.
Results are very good, cross-validated on several datasets, and details of the algorithm can be found in the following
publication: https://elifesciences.org/articles/34518. Note that the datasets used in the paper are freely available on
Zenodo https://zenodo.org/record/1205233/export/hx#.WrORP3XwaV4 if you want to try/benchmark your own spike
sorting algorithms.

Contents 1

https://elifesciences.org/articles/34518
https://zenodo.org/record/1205233/export/hx#.WrORP3XwaV4

SpyKING CIRCUS Documentation, Release 0.8.2

2 Contents

CHAPTER 1

Introduction

In this section, you will find all basic information you need about the software. Why you should use it or at least give
it a try, how to get it, and how to install it. To know more about how to use it, see the following sections.

1.1 Why using it?

SpyKING CIRCUS is a free, open-source, spike sorting software written entirely in python. In a nutshell, this is a fast
and efficient way to perform spike sorting using a template-matching based algorithm.

1.1.1 Because you have too many channels

Classical algorithms of spike sorting are not properly scaling up when the number of channels is increasing. Most,
if not all of them would have a very hard time dealing with more than 100 channels. However, the new generation
of electrodes, either in vitro (MEA with 4225 channels) or in vivo (IMEC probe with 128 channels) are providing
more and more channels, such that there is a clear need for a software that would properly scale with the size of the
electrodes.

Note: → The SpyKING CIRCUS, based on the MPI library, can be launched on several processors. Execution time
scales linearly as function of the number of computing nodes, and the memory consumption scales only linearly as
function of the number of channels. So far, the code can handle 4225 channels in parallel.

1.1.2 Because of overlapping spikes

With classical spike sorting algorithms, overlapping spikes are leading to outliers in your clusters, such that they
are discarded. Therefore, each time two neurons have overlapping waveforms, their spikes are ignored. This can
be problematic when you are addressing questions relying on fine temporal interactions within neurons. It is even
more problematic with large and dense electrodes, with many recording sites close from each others, because those

3

https://www.mpich.org/

SpyKING CIRCUS Documentation, Release 0.8.2

overlapping spikes start to be the rule instead of the exception. Therefore, you need to have a spike sorting algorithm
that can disentangle those overlapping spikes.

Note: → The SpyKING CIRCUS, using a template-matching based algorithm, reconstructs the signal as a linear sum
of individual waveforms, such that it can resolve the fine cross-correlations between neurons.

1.1.3 Because you want to automatize

For large number of channels, a lot of clusters (or equivalently templates, or cells) can be detected by spike sorting
algorithms, and the time spent by a human to review those results should be reduced as much as possible.

Note: → The SpyKING CIRCUS, in its current form, aims at automatizing as much as possible the whole workflow
of spike sorting, reducing the human interaction. Not that it can be zero, but the software aims toward a drastic
reduction of the manual curation, and results shows that performances as good or even better than with classical spike
sorting approaches can be obtained.

1.2 How to get the code

The code is currently hosted on github, in a public repository, relying on Git, at https://github.com/spyking-circus/
spyking-circus. The following explanations are only for those that want to get a copy of the git folder, with a cutting-
edge version of the software.

Note: The code can be installed automatically to its latest release using pip or conda (see How to install).

1.2.1 Cloning the source

Create a folder called spyking-circus, and simply do:

>> git clone https://github.com/spyking-circus/spyking-circus.git spyking-circus

The advantages of that is that you can simply update the code, if changes have been made, by doing:

>> git pull

Without git

If you do not have git installed, and want to get the source, then one way to proceed is:

1. Download and install SourceTree 2. 3. Click on the Clone in SourceTree button, and use the
following link with SourceTree https://github.com/spyking-circus/spyking-circus 4. In SourceTree you
just need to click on the Pull button to get the latest version of the software.

4 Chapter 1. Introduction

https://github.com
https://git-scm.com/
https://github.com/spyking-circus/spyking-circus
https://github.com/spyking-circus/spyking-circus
https://www.sourcetreeapp.com/
https://www.sourcetreeapp.com/
https://github.com/spyking-circus/spyking-circus
https://www.sourcetreeapp.com/

SpyKING CIRCUS Documentation, Release 0.8.2

1.2.2 Download the archive

All released versions of the code can now be downloaded in the Download section of the github project, as .tar.gz
files (pip install)

To know more about how to install the sofware, (see How to install)

1.3 Installation

The SpyKING CIRCUS comes as a python package, and it at this stage, note that mostly unix systems have been
tested. However, users managed to get the software running on Mac OS X, and on Windows 7,8, or 10. We are doing
our best, using your feedbacks, to improve the packaging and make the whole process as smooth as possible on all
platforms.

1.3.1 How to install

Note: We recommend using Anaconda, with a simple install:

• see here for detailed instructions on Windows

• see here for detailed instructions on Mac OS X

Using with CONDA

Install Anaconda or miniconda, e.g. all on the terminal (but there is also a .exe installer for Windows, etc.):

As an example for linux, just type:

>> wget https://repo.continuum.io/miniconda/Miniconda-latest-Linux-x86_64.sh
>> bash Miniconda-latest-Linux-x86_64.sh

Then install the software itself:

>> conda install -c conda-forge -c anaconda -c spyking-circus spyking-circus

Using pip

To do so, use the pip utility:

>> pip install spyking-circus

You might want to add the --user flag, to install SpyKING CIRCUS for the local user only, which means that you
don’t need administrator privileges for the installation.

In principle, the above command also install SpyKING CIRCUS’s dependencies, and CUDA_ support if nvcc com-
mand is found in your environment. Once the install is complete, you need to add the PATH where SpyKING CIRCUS
has been installed into your local PATH, if not already the case. To do so, simply edit your $HOME/.bashrc and
add the following line:

1.3. Installation 5

https://github.com
https://anaconda.org/spyking-circus/spyking-circus
https://badge.fury.io/py/spyking-circus
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://docs.conda.io/en/latest/miniconda.html

SpyKING CIRCUS Documentation, Release 0.8.2

export PATH=$PATH:$HOME/.local/bin

Then you have to relaunch the shell, and you should now have the SpyKING CIRCUS installed!

Using sources

Alternatively, you can download the source package directly and uncompress it, or work directly with the git folder
https://github.com/spyking-circus/spyking-circus to be in sync with bug fixes. You can then simply run:

>> pip install . --user

Or even better, you can install it with the develop mode:

>> pip install . -e --user

Such that if you do a git pull in the software directory, you do not need to reinstall it.

For those that are not pip users, it is equivalent to:

>> python setup.py install

Or to keep the folder in sync with the install in a develop mode:

>> python setup.py develop

Note: If you want to install scikit-learn, needed to get the BEER estimates, you need to add [beer] to any
pip install

Note: If you experience some issues with Qt or pyQt, you may need to install it manually on your system. For linux
users, simply use your software distribution system (apt for example). For windows user, please see here

Installing phy 2.0

If you want to use the phy GUI to visualize your results, you may need to install phy 2.0:

>> pip install colorcet pyopengl joblib
>> pip install --upgrade http://github.com/cortex-lab/phy/archive/dev.zip
>> pip install --upgrade http://github.com/cortex-lab/phylib/archive/master.zip

1.3.2 Home Directory

During the install, the code creates a spyking-circus folder in /home/user where it will copy several probe
designs, and a copy of the default parameter file. Note that if you are always using the code with a similar setup, you
can edit this template, as this is the one that will be used by default.

6 Chapter 1. Introduction

https://github.com/spyking-circus/spyking-circus
http://doc.qt.io/qt-5/windows-support.html

SpyKING CIRCUS Documentation, Release 0.8.2

1.3.3 Parallelism

Using MPI

If you are planning to use MPI, the best solution is to create a file $HOME/spyking-circus/circus.hosts
with the lists of available nodes (see Configuration of MPI). You should also make sure, for large number of electrodes,
that your MPI implementation is compatible recent enough such that it can allow shared memory within processes.

Using HDF5 with MPI

If you are planning to use large number of electrodes (> 500), then you may use the fact that the code can use parallel
HDF5. This will speed everything and reduce disk usage. To know more about how to activate it, see (see Parallel
HDF5).

1.3.4 Dependencies

For information, here is the list of all the dependencies required by the SpyKING CIRCUS:

1. tqdm

2. mpi4py

3. numpy

4. cython

5. scipy

6. matplotlib

7. h5py

8. colorama

9. blosc

10. scikit-learn

11. statsmodels

1.4 Configuration of MPI

The code is able to use multiple CPU to speed up the operations. It can even use GPU during the fitting phase.
However, you need to have a valid hostfile to inform MPI of what are the available nodes on your computer. By default,
the code searches for the file circus.hosts in the spyking-circus folder, create during the installation $HOME/
spyking-circus/. Otherwise, you can provide it to the main script with the -H argument (see documentation on
the parameters):

>> spyking-circus path/mydata.extesion -H mpi.hosts

1.4.1 Structure of the hostfile

Such a hostfile may depend on the fork of MPI you are using. For MPICH, this will typically look like (if you want to
use only 4 cores per machine):

1.4. Configuration of MPI 7

https://www.mpich.org/
https://www.hdfgroup.org
https://www.mpich.org/

SpyKING CIRCUS Documentation, Release 0.8.2

192.168.0.1:4
192.168.0.2:4
192.168.0.3:4
192.168.0.4:4
192.168.0.5:4

For OpenMPI, this will typically look like (if you want to use only 4 cores per machine):

192.168.0.1 max-slots=4
192.168.0.2 max-slots=4
192.168.0.3 max-slots=4
192.168.0.4 max-slots=4
192.168.0.5 max-slots=4

If this is your parameter file, and if you launch the code with 20 CPUs:

>> spyking-circus path/mydata.extension -c 20

Then the code will launch 4 instances of the program on the 5 nodes listed in the hostname.hosts file

Note: If you are using multiple machines, all should read/write in a shared folder. This can be done with NFS or
SAMBA on Windows. Usually, most clusters will provide you such a shared /home/user folder, be sure this is the
case

Warning: For now, the code is working with MPICH versions higher than 3.0, and OpenMPI versions below 3.0.
We plan to make this more uniform in a near future, but the two softwares made different implementation choices
for the MPI library

1.4.2 Shared Memory

With recent versions of MPI, you can share memory on a single machine, and this is used by the code to reduce the
memory footprint. If you have large number of channels and/or templates, be sure to use a recent version of MPICH
(>= 3.0) or OpenMPI (> 1.8.5)

1.5 Release notes

1.5.1 Spyking CIRCUS 0.8

This is the 0.8 release of the SpyKING CIRCUS, a new approach to the problem of spike sorting. The code is based on
a smart clustering with sub sampling, and a greedy template matching approach, such that it can resolve the problem
of overlapping spikes. The publication about the software is available at https://elifesciences.org/articles/34518

Warning: The code may still evolve. Even if results are or should be correct, we can expect some more opti-
mizations in a near future, based on feedbacks obtained on multiple datasets. If you spot some problems with the
results, please be in touch with pierre.yger@inserm.fr

8 Chapter 1. Introduction

https://www.mpich.org/
https://en.wikipedia.org/wiki/Network_File_System
https://support.microsoft.com/en-us/kb/224967
https://www.mpich.org/
https://www.mpich.org/
https://www.mpich.org/
https://www.mpich.org/
https://elifesciences.org/articles/34518
mailto:pierre.yger@inserm.fr

SpyKING CIRCUS Documentation, Release 0.8.2

Fig. 1: The software can be used with command line, or a dedicated GUI

1.5. Release notes 9

SpyKING CIRCUS Documentation, Release 0.8.2

Contributions

Code and documentation contributions (ordered by the number of commits):

• Pierre Yger

• Marcel Stimberg

• Baptiste Lebfevre

• Christophe Gardella

• Olivier Marre

• Cyrille Rossant

Release 0.8.1

• add a docker file to build the software

• add support for shanks in phy 2.0

• add support for deconverting in the qt launcher

• do not create a Qt App if merging in auto mode

• waveforms are convolved with a Hanning window to boost PCA

• oversampling in now adapted as function of the sampling rate

• reduction of I/O while oversampling

• speed improvement with undersampling while cleaning the dictionary

• automation of the software for SpikeForest/SpikeToolkit benchmarks

• merging is now included in the default pipeline

• normalization of the metrics in the meta merging GUI

Release 0.8.0

• major improvement in the clustering. No more max_clusters parameters

• much faster clustering (thanks to Ruben Herzog)

• added the statsmodels library as a required dependency

• enhancement of the smart search mode

• enhancement of the bicubic spline interpolation

• fix a typo when using dead times and the collect mode

• fix a minor bug when small amount of spikes are found during smart search

• fix a bug in the wrapper for BRW files

• support for phy 2.0 and phylib

• remove the strongly time shifted templates

• additing of a wrapper for MDA file format

• amplitudes for unfitted spikes is now 1 when exporting to phy

10 Chapter 1. Introduction

SpyKING CIRCUS Documentation, Release 0.8.2

• default install is now qt5, to work with phy 2.0

Release 0.7.6

• cosmetic changes in the GUI

• adding a deconverting method to switch back from phy to MATLAB

• support for the lags between templates in the MATLAB GUI

• warn user if data are corrupted because of interrupted filtering

• reduction of the size for saved clusters

• display the file name in the header

• fix a nasty bug allowing spikes at the border of chunks to be fitted even during dead periods

Release 0.7.5

• fix a bug for MPICH when large dictionaries.

• fix a bug for numpy files when used with new numpy versions

• add the possibility to subtract one channel as a reference channel from others

• native support for blackrock files (only .ns5 tested so far)

• simplifications in the parameter file

• fix for display of progress bars with tqdm

• addition of a multi-folders mode for openephys

• hide GPU support for now, as this is not actively maintained and optimized

• fix in the MATLAB GUI for float32 data

• fix the broken log files

• default cpu number is now half the available cores

Release 0.7.4

• fix a regression with spline interpolation, more investigation needed

Release 0.7.0

• fix a possible rounding bug if triggers are given in ms

• artefacts are computed as medians and not means over the signal

• can turn off shared memory if needed

• a particular pattern can be specified for neuralynx files

• fix bugs with output_dir, as everything was not saved in the folder

• add a circus-folders script to process virtually files within several folders as a single recording

• add a circus-artefacts script to concatenate artefact files before using stream mode

1.5. Release notes 11

SpyKING CIRCUS Documentation, Release 0.8.2

• multi-files mode is now enabled for Neuralynx data

• fixes for conversion of old dataset with python GUI

• smooth exit if fitting with 0 templates (thanks to Alex Gonzalez)

• enhance the bicubic spline interpolation for oversampling

• spike times are now saved as uint32 for long recordings

Release 0.6.7

• optimizations for clusters (auto blosc and network bandwith)

• addition of a dead_channels option in the [detection] section, as requested

• prevent user to remove median with only 1 channel

• fix for parallel writes in HDF5 files

• hide h5py FutureWarning

Release 0.6.6

• fix for matplotlib 2.2.2

• fix a bug when loading merged data with phy GUI

• faster support for native MCD file with pyMCStream

• more robust whitening for large arrays with numerous overlaps

• add an experimental mode to refine coreset (isolated spikes)

• put merging units in Hz^2 in the merging GUI

• add a HDF5 compression mode to greatly reduce disk usage for very large probe

• add a Blosc compression mode to save bandwith for clusters

• fix a display bug in the merging GUI when performing multiple passes

Release 0.6.5

• reduce memory consumption for mixture removal with shared memory

• made an explicit parameter cc_mixtures for mixture removal in the [clustering] section

• Minor fixes in the MATLAB GUI

• fix in the exact times shown during preview if second is specified

• prevent errors if filter is False and overwrite is False

Release 0.6.4

• fix a bug in the BEER for windows platforms, enhancing robustness to mpi data types

• speed up the software when using ignore_dead_times

• ensure backward compatibility with hdf5 version for MATLAB

12 Chapter 1. Introduction

SpyKING CIRCUS Documentation, Release 0.8.2

• fix a rare bug in clustering, when no spikes are found on electrodes

• fix a bug in the MATLAB GUI when reloading saved results, skipping overlap fixes

Release 0.6.3

• fix a bug if the parameter file have tabulations characters

• add a tab to edit parameters directly in the launcher GUI

• fix dtype offset for int32 and int64

• minor optimizations for computations of overlaps

• explicit message displayed on screen if filtering has already been performed

• can specify a distinct folder for output results with output_dir parameter

• fix a bug when launching phy GUI for datafiles without data_offset parameter (HDF5)

• fix a memory leak when using dead_times

• fix a bug for BRW and python3

• fix a bug in the BEER

• pin HDF5 to 1.8.18 versions, as MATLAB is not working well with 1.10

• fix a bug when relaunching code and overwrite is False

• fix a bug when peak detection is set on both with only one channel

Release 0.6.2

• fix for openephys and new python syntax

• fix in the handling of parameters

• fix a bug on windows with unclosed hdf5 files

• fix a bug during converting with multi CPU on windows

• minor optimization in the fitting procedure

• support for qt5 (and backward compatibility with qt4 as long as phy is using Qt4)

Release 0.6.1

• fix for similarities and merged output from the GUIs

• fix for Python 3 and HDF5

• fix for Python 3 and launcher GUI

• fix for maxlag in the merging GUI

• optimization in the merging GUI for pairs suggestion

• addition of an auto_mode for meta merging, to suppress manual curation

• various fixes in the docs

• fix a bug when closing temporary files on windows

1.5. Release notes 13

SpyKING CIRCUS Documentation, Release 0.8.2

• allow spaces in names of probe files

• collect_all should take dead times into account

• patch to read INTAN 2.0 files

• fix in the MATLAB GUI when splitting neurons

• fix in the MATLAB GUI when selecting individual amplitudes

Release 0.6.0

• fix an IMPORTANT BUG in the similarities exported for phy/MATLAB, affect the suggestions in the GUI

• improvements in the neuralynx wrapper

• add the possibility to exclude some portions of the recordings from the analysis (see documentation)

• fix a small bug in MS-MPI (Windows only) when shared memory is activated and emtpy arrays are present

Release 0.5.9

• The validating step can now accept custom spikes as inputs

• Change the default frequency for filtering to 300Hz instead of 500Hz

Release 0.5.8

• fix a bug for int indices in some file wrappers (python 3.xx) (thanks to Ben Acland)

• fix a bug in the preview gui to write threshold

• fix a bug for some paths in Windows (thanks to Albert Miklos)

• add a wrapper for NeuraLynx (.ncs) file format

• fix a bug in the installation of the MATLAB GUI

• fix a bug to see results in MATLAB GUI with only 1 channel

• fix a bug to convert data to phy with only positive peaks

• add builds for python 3.6

• optimizations in file wrappers

• fix a bug for MCS headers in multifiles, if not all with same sizes

• add the possibility (with a flag) to turn off parallel HDF5 if needed

• fix a bug with latest version of HDF5, related to flush issues during clustering

Release 0.5.7

• Change the strsplit name in the MATLAB GUI

• Fix a bug in the numpy wrapper

• Fix a bug in the artefact removal (numpy 1.12), thanks to Chris Wilson

• Fixes in the matlab GUI to ease a refitting procedure, thanks to Chris Wilson

14 Chapter 1. Introduction

SpyKING CIRCUS Documentation, Release 0.8.2

• Overlaps are recomputed if size of templates has changed (for refitting)

• Addition of a “second” argument for a better control of the preview mode

• Fix when using the phy GUI and the multi-file mode.

• Add a file wrapper for INTAN (RHD) file format

Release 0.5.6

• Fix in the smart_search when only few spikes are found

• Fix a bug in density estimation when only few spikes are found

Release 0.5.5

• Improvement in the smart_select option given various datasets

• Fix a regression for the clustering introduced in 0.5.2

Release 0.5.2

• fix for the MATLAB GUI

• smart_select can now be used [experimental]

• fix for non 0: DISPLAY

• cosmetic changes in the clustering plots

• ordering of the channels in the openephys wrapper

• fix for rates in the MATLAB GUI

• artefacts can now be given in ms or in timesteps with the trig_unit parameter

Release 0.5rc

• fix a bug when exporting for phy in dense mode

• compatibility with numpy 1.12

• fix a regression with artefact removal

• fix a display bug in the thresholds while previewing with a non unitary gain

• fix a bug when filtering in multi-files mode (overwrite False, various t_starts)

• fix a bug when filtering in multi-files mode (overwrite True)

• fix a bug if matlab gui (overwrite False)

• fix the gathering method, not working anymore

• smarter selection of the centroids, leading to more clusters with the smart_select option

• addition of a How to cite section, with listed publications

1.5. Release notes 15

SpyKING CIRCUS Documentation, Release 0.8.2

Release 0.5b9

• switch from progressbar2 to tqdm, for speed and practical issues

• optimization of the ressources by preventing numpy to use multithreading with BLAS

• fix MPI issues appearing sometimes during the fitting procedure

• fix a bug in the preview mode for OpenEphys files

• slightly more robust handling of openephys files, thanks to Ben Acland

• remove the dependency to mpi4py channel on osx, as it was crashing

• fix a bug in circus-multi when using extensions

Release 0.5b8

• fix a bug in the MATLAB GUI in the BestElec while saving

• more consistency with “both” peak detection mode. Twice more waveforms are always collect during whiten-
ing/clustering

• sparse export for phy is now available

• addition of a dir_path parameter to be compatible with new phy

• fix a bug in the meta merging GUI when only one template left

Release 0.5b7

• fix a bug while converting data to phy with a non unitary gain

• fix a bug in the merging gui with some version of numpy, forcing ucast

• fix a bug if no spikes are detected while constructing the basis

• Optimization if both positive and negative peaks are detected

• fix a bug with the preview mode, while displaying non float32 data

Release 0.5b6

• fix a bug while launching the MATLAB GUI

Release 0.5b3

• code is now hosted on GitHub

• various cosmetic changes in the terminal

• addition of a garbage collector mode, to collect also all unfitted spikes, per channel

• complete restructuration of the I/O such that the code can now handle multiple file formats

• internal refactoring to ease interaction with new file formats and readibility

• because of the file format, slight restructuration of the parameter files

• N_t and radius have been moved to the [detection] section, more consistent

16 Chapter 1. Introduction

SpyKING CIRCUS Documentation, Release 0.8.2

• addition of an explicit file_format parameter in the [data] section

• every file format may have its own parameters, see documentation for details (or –info)

• can now work natively with open ephys data files (.openephys)

• can now work natively with MCD data files (.mcd) [using neuroshare]

• can now work natively with Kwik (KWD) data files (.kwd)

• can now work natively with NeuroDataWithoutBorders files (.nwb)

• can now work natively with NiX files (.nix)

• can now work natively with any HDF5-like structure data files (.h5)

• can now work natively with Arf data files (.arf)

• can now work natively with 3Brain data files (.brw)

• can now work natively with Numpy arrays (.npy)

• can now work natively with all file format supported by NeuroShare (plexon, blackrock, mcd, . . .)

• can still work natively with raw binary files with/without headers :)

• faster IO for raw binary files

• refactoring of the exports during multi-file/preview/benchmark: everything is now handled in raw binary

• fix a bug with the size of the safety time parameter during whitening and clustering

• all the interactions with the parameters are now done in the circus/shared/parser.py file

• all the interactions with the probe are now done in the circus/shared/probes.py file

• all the messages are now handled in circus/shared/messages.py

• more robust and explicit logging system

• more robust checking of the parameters

• display the electrode number in the preview/result GUI

• setting up a continuous integration workflow to test all conda packages with appveyor and travis automatically

• cuda support is now turned off by default, for smoother install procedures (GPU yet do not bring much)

• file format can be streamed. Over several files (former multi-file mode), but also within the same file

• several cosmetic changes in the default parameter file

• clustering:smart_search and merging:correct_lag are now True by default

• fix a minor bug in the smart search, biasing the estimation of densities

• fix a bug with the masks and the smart-search: improving results

• addition of an overwrite parameter. Note that any t_start/t_stop infos are lost

• if using streams, or internal t_start, output times are on the same time axis than the datafile

• more robust parameter checking

1.5. Release notes 17

SpyKING CIRCUS Documentation, Release 0.8.2

Release 0.4.3

• cosmetic changes in the terminal

• suggest to reduce chunk sizes for high density probes (N_e > 500) to save memory

• fix a once-in-a-while bug in the smart-search

Release 0.4.2

• fix a bug in the test suite

• fix a bug in python GUI for non integer thresholds

• fix a bug with output strings in python3

• fix a bug to kill processes in windows from the launcher

• fix graphical issues in the launcher and python3

• colors are now present also in python3

• finer control of the amplitudes with the dispersion parameter

• finer control of the cut off frequencies during the filtering

• the smart search mode is now back, with a simple True/False flag. Use it for long or noisy recordings

• optimizations in the smart search mode, now implementing a rejection method based on amplitudes

• show the mean amplitude over time in the MATLAB GUI

• MATLAB is automatically closed when closing the MATLAB GUI

• mean rate is now displayed in the MATLAB GUI, for new datasets only

• spike times are now saved as uint32, for new datasets only

• various fixes in the docs

• improvements when peak detection is set on “both”

• message about cc_merge for low density probes

• message about smart search for long recordings

• various cosmetic changes

• add a conda app for anaconda navigator

Release 0.4.1

• fix a bug for converting millions of PCs to phy, getting rid of MPI limitation to int32

• fix bugs with install on Windows 10, forcing int64 while default is int32 even on 64bits platforms

• improved errors messages if wrong MCS headers are used

• Various cosmetic changes

Release 0.4

First realease of the software

18 Chapter 1. Introduction

SpyKING CIRCUS Documentation, Release 0.8.2

1.6 Future plans and contributions

Here is a non-exhaustive list of the features that we are currently working on, and that should make it into future
releases of the software

1.6.1 Real Time spike sorting

This is the most challenging task, and we are thinking about what is the best way to properly implement it. Such a
real-time spike sorting for dense arrays is within reach, but several challenges need to be addressed to make it possible.
Data will be read from memory streams, and templates will be updated on-the-fly. The plan is to have spatio-temporal
templates tracking cells over time, at a cost of a small temporal lag that can not be avoided because of the template-
matching step.

1.6.2 Better, faster, stronger

GPU kernels should be optimized to increase the speed of the algorithm, and we are always seeking for optimizations
along the road. For Real-Time spike sorting, if we want it to be accurate for thousands of channels, any optimizations
is welcome.

1.6.3 Contributions

If you have ideas, or if you want to contribute to the software, with the same idea that we should develop a proper
and unified framework for semi-automated spike sorting, please do not hesitate to contact pierre.yger@inserm.fr .
Currently, the code itself is not properly documented, as our main focus was to first get a stable working algorithm.
Now that this goal is now achieved, we can dive more into software development and enhance its modularity.

1.6. Future plans and contributions 19

mailto:pierre.yger@inserm.fr

SpyKING CIRCUS Documentation, Release 0.8.2

20 Chapter 1. Introduction

CHAPTER 2

Launching the code

In this section, you will find all the information you need to be able to launch the code, and obtain results on any given
dataset. To know more about how to visualize them, you will find everything in the following section

2.1 Quickstart

2.1.1 Running the algorithm

Copy your files

First, you will need to create a directory (we call it path – usually you put both the date of the experiment and the
name of the person doing the sorting). Your data file should have a name like path/mydata.extension

Warning: Your data should not be filtered, and by default the filtering will be done only once onto the data. So
you need to keep a copy elsewhere of you raw data. If you really do not want to filter data on site, you can use the
overwrite parameter (see documentation on the code for more information).

Generate a parameter file

Before running the algorithm, you will always need to provide parameters, as a parameter file. Note that this parameter
file has to be in the same folder than your data, and should be named path/mydata.params. If you have already
yours, great, just copy it in the folder. Otherwise, just launch the algorithm, and the algorithm will ask you if you want
to create a template one, that you have to edit before launching the code:

>> spyking-circus.py path/mydata.extension
##
Welcome to the SpyKING CIRCUS (0.7.6)
#####
Written by P.Yger and O.Marre

(continues on next page)

21

SpyKING CIRCUS Documentation, Release 0.8.2

(continued from previous page)

##
The parameter file is not present!
You must have a file named path/mydata.params, properly configured,
in the same folder, with the data file.
Do you want SpyKING CIRCUS to create a template there? [y/n]

In the parameter file, you mostly have to change only informations in the data section (see documentation on the
code for more information).

Run the algorithm

Then you should run the algorithm by typing the following command(s):

>> spyking-circus path/mydata.extension

It should take around the time of the recording to run – maybe a bit more. The typical output of the program will be
something like:

##
Welcome to the SpyKING CIRCUS (0.7.6)
#####
Written by P.Yger and O.Marre
##

File : /home/test.dat
Steps : filtering, whitening, clustering, fitting
Number of CPU : 1
Parallel HDF5 : True
Shared memory : True
Hostfile : /home/pierre/spyking-circus/circus.hosts

##

------------------------- Informations -------------------------
| Number of recorded channels : 252
| Number of analyzed channels : 252
| File format : RAW_BINARY
| Data type : int16
| Sampling rate : 20 kHz
| Duration of the recording : 4 min 0 s 0 ms
| Width of the templates : 3 ms
| Spatial radius considered : 200 um
Threshold crossing : negative
------------------------- Informations -------------------------
Filtering has already been done with cut off at 500Hz
--
Analyzing data to get whitening matrices and thresholds...
We found 20s without spikes for whitening matrices...
Because of whitening, we need to recompute the thresholds...
Searching spikes to construct the PCA basis...
100%|##

Note that you can of course change the number of CPU/GPU used, and also launch only a subset of the steps. See the
help of the code to have more informations.

22 Chapter 2. Launching the code

SpyKING CIRCUS Documentation, Release 0.8.2

2.1.2 Using Several CPUs

To use several CPUs, you should have a proper installation of MPI, and a valid hostfile given to the program. See
documentation on MPI. And then, you simply need to do, if N is the number of processors:

>> spyking-circus path/mydata.extension -c N

2.1.3 Using the GUI

Get the data

Once the algorithm has run on the data path/mydata.extension, you should have the following files in the directory
path:

• path/mydata/mydata.result.hdf5

• path/mydata/mydata.cluster.hdf5

• path/mydata/mydata.overlap.hdf5

• path/mydata/mydata.templates.hdf5

• path/mydata/mydata.basis.hdf5

See the details here see file formats to know more how those files are structured.

Matlab GUI

To launch the MATLAB GUI provided with the software, you need of course to have a valid installation of MATLAB,
and you should be able to simply do:

>> circus-gui-matlab path/mydata.extension

Python GUI

An experimental GUI derived from phy and made especially for template-matching based algorithms can be launched
by doing:

>> spyking-circus path/mydata.extension -m converting
>> circus-gui-python path/mydata.extension

To enable it, you must have a valid installation of phy and phylib

To know more about the GUI section, see documentation on the GUI

2.2 Parameters

2.2.1 Display the helpers

To know what are all the parameters of the software, just do:

>> spyking-circus -h

2.2. Parameters 23

http://fr.mathworks.com/products/matlab/
http://fr.mathworks.com/products/matlab/
https://github.com/cortex-lab/phy
https://github.com/cortex-lab/phy
https://github.com/cortex-lab/phylib

SpyKING CIRCUS Documentation, Release 0.8.2

To know what are all the file formats supported by the software, just do:

>> spyking-circus help -i

To know more what are the parameter of a given file format X, just do

>> spyking-circus X -i

2.2.2 Command line Parameters

The parameters to launch the program are:

• -m or --method

What are the steps of the algorithm you would like to perform. Defaults steps are:

1. filtering

2. whitening

3. clustering

4. fitting

Note that filtering is performed only once, and if the code is relaunched on the same data, a flag in the parameter file
will prevent the code to filter twice. You can specify only a subset of steps by doing:

>> spyking-circus path/mydata.extension -m clustering,fitting

Note: Extra steps are available, such as merging (see the devoted section documentation on Meta Merging), or even
more (documentation on extra steps).

• -c or --cpu

The number of CPU that will be used by the code. For example, just do:

>> spyking-circus path/mydata.extension -m clustering,fitting -c 10

• -H or --hostfile

The CPUs used depends on your MPI configuration. If you wan to configure them, you must provide a specific hostfile
and do:

>> spyking-circus path/mydata.extension -c 10 -H nodes.hosts

To know more about the host file, see the MPI section documentation on MPI

• -b or --batch

The code can accept a text file with several commands that will be executed one after the other, in a batch mode. This
is interesting for processing several datasets in a row. An example of such a text file commands.txt would simply
be:

path/mydata1.extention -c 10
path/mydata2.extention -c 10 -m fitting
path/mydata3.extention -c 10 -m clustering,fitting,converting

Then simply launch the code by doing:

24 Chapter 2. Launching the code

SpyKING CIRCUS Documentation, Release 0.8.2

>> spyking-circus commands.txt -b

Warning: When processing files in a batch mode, be sure that the parameters file have been pre-generated.
Otherwise, the code will hang asking you to generate them

• -p or --preview

To be sure that data are properly loaded before filtering everything on site, the code will load only the first second of
the data, computes thresholds, and show you an interactive GUI to visualize everything. Please see the documentation
on Python GUI

Note: The preview mode does not modify the data file!

• -r or --result

Launch an interactive GUI to show you, superimposed, the activity on your electrodes and the reconstruction provided
by the software. This has to be used as a sanity check. Please see the documentation on Python GUI

• -s or --second

If the preview mode is activated, by default, it will show the first 2 seconds of the data. But you can specify an offset,
in second, with this extra parameter such that the preview mode will display the signal in [second, second+2]

• -o or --output

If you want to generate synthetic benchmarks from a dataset that you have already sorted, this allows you, using the
benchmarking mode, to produce a new file output based on what type of benchmarks you want to do (see type)

• -t or --type

While generating synthetic datasets, you have to chose from one of those three possibilities: fitting,
clustering, synchrony. To know more about what those benchmarks are, see the documentation on extra
steps

Note: Benchmarks will be better integrated soon into an automatic test suite, use them at your own risks for now. To
know more about the additional extra steps, documentation on extra steps

2.2.3 Configuration File

The code, when launched for the first time, generates a parameter file. The default template used for the parameter
files is the one located in /home/user/spyking-circus/config.params. You can edit it in advance if you
are always using the same setup.

To know more about what is in the configuration file, documentation on the configuration

2.3 Designing your probe file

2.3.1 What is the probe file?

In order to launch the code, you must specify a mapping for your electrode, i.e you must tell the code how your
recorded data can be mapped onto the physical space, and what is the spatial position of all your channels. Examples

2.3. Designing your probe file 25

SpyKING CIRCUS Documentation, Release 0.8.2

of such probe files (with the extension .prb) can be seen in the probes folder of the code. They will all look like
the following one:

total_nb_channels = 32
radius = 100

channel_groups = {
1: {

'channels': list(range(32)),
'graph' : [],
'geometry': {

0: [0.0 , 0.0],
1: [0.0 , 50.0],
2: [+21.65, 262.5],
3: [+21.65, 237.5],
4: [+21.65, 187.5],
5: [+21.65, 137.5],
6: [+21.65, 87.5],
7: [+21.65, 37.5],
8: [0.0 , 200.0],
9: [0.0 , 250.0],
10: [+21.65, 62.5],
11: [+21.65, 112.5],
12: [+21.65, 162.5],
13: [+21.65, 212.5],
14: [0.0 , 150.0],
15: [0.0 , 100.0],
16: [0.0 , 125.0],
17: [0.0 , 175.0],
18: [-21.65, 212.5],
19: [-21.65, 162.5],
20: [-21.65, 112.5],
21: [-21.65, 62.5],
22: [0.0 , 275.0],
23: [0.0 , 225.0],
24: [-21.65, 37.5],
25: [-21.65, 87.5],
26: [-21.65, 137.5],
27: [-21.65, 187.5],
28: [-21.65, 237.5],
29: [-21.65, 262.5],
30: [0.0 , 75.0],
31: [0.0 , 25.0],

}
}

}

This prb format is inherited from the phy documentation, in order to ensure compatibility.

2.3.2 Key parameters

As you can see, an extra requirement of the SpyKING CIRCUS is that you specify, at the top of the probe file, two
parameters:

• total_nb_channels: The total number of channels currently recorded. This has to be the number of rows
in your data file

• radius: The default spatial extent [in um] of the templates that will be considered for that given probe. Note

26 Chapter 2. Launching the code

https://github.com/cortex-lab/phy

SpyKING CIRCUS Documentation, Release 0.8.2

Fig. 1: An example of a probe mapping, taken from Adam Kampff

2.3. Designing your probe file 27

http://www.kampff-lab.org/

SpyKING CIRCUS Documentation, Release 0.8.2

that for in vitro recording, such as the MEA with 252 channels, a spike can usually be seen in a physical radius of
250um. For in vivo data, 100um seems like a more reasonable value. You can change this value in the parameter
file generated by the algorithm (see documentation on the configuration file)

2.3.3 Channel groups

The channel_group is a python dictionary where you’ll specify, for every electrodes (you can have several of them),
the exact geometry of all the recording sites on that probe, and what are the channels that should be processed by the
algorithm. To be more explicit, in the previous example, there is one entry in the dictionary (with key 1), and this entry
is itself a dictionary with three entries:

• channels: The list of the channels that will be considered by the algorithm. Note that even if your electrode
has N channels, some can be discarded if they are not listed in this channels list.

• graph: Not used by the SpyKING CIRCUS, only here to ensure compatibility with phy

• geometry: This is where you have to specify all the physical positions of your channels. This is itself a
dictionary, whose entries are the number of the channels, and whose values are the position [in um], of the
recoding sites on your probe.

Note: You only need, in the geometry dictionary, to have entries for the channels you are listing in the channels
list. The code only needs positions for analyzed channels

2.3.4 Examples

By default, during the install process, the code should copy some default probe files into /home/user/
spyking-circus/probes. You can have a look at them.

2.3.5 How do deal with several shanks ?

There are two ways to simply handle several shanks:

• in the .prb file, you can create a single large channel group, where all the shanks are far enough (for example in
the x direction), such that templates will not interact (based on the physical radius). If your radius is 200umm,
for example, if you set x to 0 for the first shank, 300 for the second one, and so on, templates will be confined
per shank.

• in the .prb file, you can also have several channel groups (see for example adrien.prb in the probes folder).
What is done by the code, then, is that during internal computations templates are confined to each channel
groups. However, for graphical purpose, when you’ll use the GUI, the global x/y coordinates across all shanks
are used. Therefore, if you do not want to have them plotted on top of each other, you still need to add a x/y
padding for all of them.

2.3.6 How do deal with dead channels ?

You have two ways to deal with channels that you want to discard from the analysis:

• in the .prb file, you can specify a given list of channels to analyse channels that may not have all the
recorded channels. For example, if you have a probe with 32 channels, but channels set to range(28), then
the two last channels will be ignored

• with the dead_channels parameter of the configuration file. Coming back to the previous example, you can
set such a parameter to {1 : [28, 29]} in order to exclude the last two channels

28 Chapter 2. Launching the code

https://github.com/cortex-lab/phy

SpyKING CIRCUS Documentation, Release 0.8.2

2.4 Configuration File

This is the core of the algorithm, so this file has to be filled properly based on your data. Even if all key parameters
of the algorithm are listed in the file, only few are likely to be modified by a non-advanced user. The configuration
file is divided in several sections. For all those sections, we will review the parameters, and tell you what are the most
important ones

2.4.1 Data

The data section is:

file_format = # Can be raw_binary, openephys, hdf5, ... See >> spyking-
→˓circus help -i for more info
stream_mode = None # None by default. Can be multi-files, or anything
→˓depending to the file format
mapping = # Mapping of the electrode (see http://spyking-circus.rtfd.
→˓ord)
suffix = # Suffix to add to generated files
overwrite = True # If you want to filter or remove artefacts on site. Data
→˓are duplicated otherwise
output_dir = # By default, generated data are in the same folder as the
→˓data.
parallel_hdf5 = True # Use the parallel HDF5 feature (if available)

Warning: This is the most important section, that will allow the code to properly load your data. If not properly
filled, then results will be wrong. Note that depending on your file_format, you may need to add here several
parameters, such as sampling_rate, data_dtype, . . . They will be requested if they can not be infered from
the header of your data structure. To check if data are properly loaded, consider using the preview mode before
launching the whole algorithm

Parameters that are most likely to be changed:

• file_format You must select a supported file format (see What are the supported formats) or write
your own wrapper (see Write your own data format)

• mapping This is the path to your probe mapping (see How to design a probe file)

• stream_mode If streams in you data (could be multi-files, or even in the same file) should be processed
together (see Using multi files)

• overwrite If True, data are overwritten during filtering, assuming the file format has write access.
Otherwise, an external raw_binary file will be created during the filtering step, if any.

• ouput_dir If you want all the file generated by SpyKING CIRCUS to be in a particular directory,
instead of next to the raw data

• parallel_hdf5 Try to use the option for parallel write of HDF5. Need to be configured (see how to
install hdf5)

2.4.2 Detection

The detection section is:

2.4. Configuration File 29

SpyKING CIRCUS Documentation, Release 0.8.2

radius = auto # Radius [in um] (if auto, read from the prb file)
N_t = 5 # Width of the templates [in ms]
spike_thresh = 6 # Threshold for spike detection
peaks = negative # Can be negative (default), positive or both
alignment = True # Realign the waveforms by oversampling
dead_channels = # If not empty or specified in the probe, a dictionary
→˓{channel_group : [list_of_valid_ids]}

Parameters that are most likely to be changed:

• N_t The temporal width of the templates. For in vitro data, 5ms seems a good value. For in vivo data, you
should rather use 3 or even 2ms

• radius The spatial width of the templates. By default, this value is read from the probe file. However, if
you want to specify a larger or a smaller value [in um], you can do it here

• spike_thresh The threshold for spike detection. 6-7 are good values

• peaks By default, the code detects only negative peaks, but you can search for positive peaks, or both

• alignment By default, during clustering, the waveforms are realigned by oversampling at 5 times the
sampling rate and using bicubic spline interpolation

• dead_channels You can exclude dead channels either directly in the probe file, with the channels
list, or with this dead_channels parameter. To do so, you must enter a dictionary of the following form
{channel_group : [list_of_valid_ids]}

2.4.3 Filtering

The filtering section is:

cut_off = 300, auto # Min and Max (auto=nyquist) cut off frequencies for the
→˓band pass butterworth filter [Hz]
filter = True # If True, then a low-pass filtering is performed
remove_median = False # If True, median over all channels is substracted to each
→˓channels (movement artefacts)
common_ground = # If you want to use a particular channel as a reference
→˓ground: should be a valid channel number

Warning: The code performs the filtering of your data writing on the file itself. Therefore, you must have a
copy of your raw data elsewhere. Note that as long as your keeping the parameter files, you can relaunch the code
safely: the program will not filter multiple times the data, because of the flag filter_done at the end of the
configuration file.

Parameters that are most likely to be changed:

• cut_off The default value of 500Hz has been used in various recordings, but you can change it if needed.
You can also specify the upper bound of the Butterworth filter

• filter If your data are already filtered by a third program, turn that flag to False

• remove_median If you have some movement artefacts in your in vivo recording, and want to substract
the median activity over all analysed channels from each channel individually

• common_ground If you want to use a particular channel as a reference, and subtract its activity from all
others. Note that the activity on this particular channel will thus be nul

30 Chapter 2. Launching the code

SpyKING CIRCUS Documentation, Release 0.8.2

2.4.4 Triggers

The triggers section is:

trig_file = # External stimuli to be considered as putative artefacts
→˓[in trig units] (see documentation)
trig_windows = # The time windows of those external stimuli [in trig
→˓units]
trig_unit = ms # The unit in which times are expressed: can be ms or
→˓timestep
clean_artefact = False # If True, external artefacts induced by triggers will be
→˓suppressed from data
dead_file = # Portion of the signals that should be excluded from the
→˓analysis [in dead units]
dead_unit = ms # The unit in which times for dead regions are expressed:
→˓can be ms or timestep
ignore_times = False # If True, any spike in the dead regions will be ignored
→˓by the analysis
make_plots = # Generate sanity plots of the averaged artefacts
→˓[Nothing or None if no plots]

Parameters that are most likely to be changed:

• trig_file The path to the file where your artefact times and labels. See how to deal with stimulation
artefacts

• trig_windows The path to file where your artefact temporal windows. See how to deal with stimulation
artefacts

• clean_artefact If you want to remove any stimulation artefacts, defined in the previous files. See
how to deal with stimulation artefacts

• make_plots The default format to save the plots of the artefacts, one per artefact, showing all channels.
You can set it to None if you do not want any

• trig_unit If you want times/duration in the trig_file and trig_windows to be in timestep or
ms

• dead_file The path to the file where the dead portions of the recording, that should be excluded from
the analysis, are specified. . See how to deal with stimulation artefacts

• dead_unit If you want times/duration in the dead_file to be in timestep or ms

• ignore_times If you want to remove any dead portions of the recording, defined in dead_file. See
how to deal with stimulation artefacts

2.4.5 Whitening

The whitening section is:

chunk_size = 60 # Size of the data chunks [in s]
safety_time = 1 # Temporal zone around which templates are isolated [in ms]
spatial = True # Perform spatial whitening
max_elts = 10000 # Max number of events per electrode (should be compatible
→˓with nb_elts)
nb_elts = 0.8 # Fraction of max_elts that should be obtained per
→˓electrode [0-1]
output_dim = 5 # Can be in percent of variance explain, or num of
→˓dimensions for PCA on waveforms

2.4. Configuration File 31

SpyKING CIRCUS Documentation, Release 0.8.2

Parameters that are most likely to be changed:

• output_dim If you want to save some memory usage, you can reduce the number of features kept to
describe a waveform.

• chunk_size If you have a very large number of electrode, and not enough memory, you can reduce it

2.4.6 Clustering

The clustering section is:

extraction = median-raw # Can be either median-raw (default), median-pca, mean-
→˓pca, mean-raw, or quadratic
safety_space = True # If True, we exclude spikes in the vicinity of a
→˓selected spikes
safety_time = 1 # Temporal zone around which templates are isolated [in
→˓ms]
max_elts = 10000 # Max number of events per electrode (should be
→˓compatible with nb_elts)
nb_elts = 0.8 # Fraction of max_elts that should be obtained per
→˓electrode [0-1]
nclus_min = 0.002 # Min number of elements in a cluster (given in
→˓percentage)
nb_repeats = 3 # Number of passes used for the clustering
make_plots = # Generate sanity plots of the clustering
sim_same_elec = 3 # Distance within clusters under which they are re-merged
sensitivity = 5 # The only parameter to control the cluster. The lower,
→˓the more sensitive
cc_merge = 0.975 # If CC between two templates is higher, they are merged
dispersion = (5, 5) # Min and Max dispersion allowed for amplitudes [in MAD]
smart_search = True # Parameter to activate the smart search mode
noise_thr = 0.8 # Minimal amplitudes are such than amp*min(templates) <
→˓noise_thr*threshold
remove_mixture = True # At the end of the clustering, we remove mixtures of
→˓templates
cc_mixtures = 0.75 # If CC between a sum of two templates and a template is
→˓higher, it is removed

Note: This is the a key section, as bad clustering will implies bad results. However, the code is very robust to
parameters changes.

Parameters that are most likely to be changed:

• extraction The method to estimate the templates. Raw methods are slower, but more accurate, as
data are read from the files. PCA methods are faster, but less accurate, and may lead to some distorted
templates. Quadratic is slower, and should not be used.

• max_elts The number of elements that every electrode will try to collect, in order to perform the clus-
tering

• nclus_min If you have too many clusters with few elements, you can increase this value. This is ex-
pressed in percentage of collected spike per electrode. So one electrode collecting max_elts spikes will
keep clusters with more than nclus_min.max_elts. Otherwise, they are discarded

• nb_repeats The number of passes performed by the algorithm to refine the density landscape

32 Chapter 2. Launching the code

SpyKING CIRCUS Documentation, Release 0.8.2

• smart_search By default, the code will collect only a subset of spikes, randomly, on all electrodes.
However, for long recordings, or if you have low thresholds, you may want to select them in a smarter
manner, in order to avoid missing the large ones, under represented. If the smart search is activated,
the code will first sample the distribution of amplitudes, on all channels, and then implement a rejection
algorithm such that it will try to select spikes in order to make the distribution of amplitudes more uniform.

• cc_merge After local merging per electrode, this step will make sure that you do not have duplicates
in your templates, that may have been spread on several electrodes. All templates with a correlation
coefficient higher than that parameter are merged. Remember that the more you merge, the faster is the fit

• dispersion The spread of the amplitudes allowed, for every templates, around the centroid.

• remove_mixture By default, any template that can be explained as sum of two others is deleted.

• cc_mixtures The CC threshold above which mixtures are considered to be valid, and thus removed

• make_plots By default, the code generates sanity plots of the clustering, one per electrode.

2.4.7 Fitting

The fitting section is:

chunk = 1 # Size of chunks used during fitting [in second]
amp_limits = (0.3, 30) # Amplitudes for the templates during spike detection
amp_auto = True # True if amplitudes are adjusted automatically for every
→˓templates
max_chunk = inf # Fit only up to max_chunk
collect_all = False # If True, one garbage template per electrode is created,
→˓to store unfitted spikes

Parameters that are most likely to be changed:

• chunk again, to reduce memory usage, you can reduce the size of the temporal chunks during fitting.
Note that it has to be one order of magnitude higher than the template width N_t

• max_chunk If you just want to fit the first N chunks, otherwise, the whole file is processed

• collect_all If you want to also collect all the spike times at which no templates were fitted. This is
particularly useful to debug the algorithm, and understand if something is wrong on a given channel

2.4.8 Merging

The merging section is:

cc_overlap = 0.85 # Only templates with CC higher than cc_overlap may be
→˓merged
cc_bin = 2 # Bin size for computing CC [in ms]
correct_lag = True # If spikes are aligned when merging. May be better for
→˓phy usage
default_lag = 5 # Default length of the period to compute dip in the CC
→˓[ms]
auto_mode = 0.75 # Between 0 (aggressive) and 1 (no merging). If empty, GUI
→˓is launched

To know more about how those merges are performed and how to use this option, see Automatic Merging. Parameters that are most likely to be changed:

2.4. Configuration File 33

SpyKING CIRCUS Documentation, Release 0.8.2

• correct_lag By default, in the meta-merging GUI, when two templates are merged, the spike times of
the one removed are simply added to the one kept, without modification. However, it is more accurate to
shift those spike, in times, by the temporal shift that may exist between those two templates. This will lead
to a better visualization in phy, with more aligned spikes

• auto_mode If your recording is stationary, you can try to perform a fully automated merging. By setting
a positive value, you control the level of merging performed by the software. Values such as 1 should be a
good start, but see see Automatic Merging for more details.

2.4.9 Converting

The converting section is:

erase_all = True # If False, a prompt will ask you to export if export has
→˓already been done
sparse_export = False # If True, data for phy are exported in a sparse format.
→˓Need recent version of phy
export_pcs = prompt # Can be prompt [default] or in none, all, some
export_all = False # If True, unfitted spikes will be exported as the last Ne
→˓templates

Parameters that are most likely to be changed:

• erase_all If you want to always erase former export, and skip the prompt

• sparse_export If you have a large number of templates or a very high density probe, you should use
the sparse format for phy

• export_pcs If you already know that you want to have all, some, or no PC and skip the prompt

• export_all If you used the collect_all mode in the [fitting] section, you can export unfitted
spike times to phy. In this case, the last N templates, if N is the number of electrodes, are the garbage
collectors.

2.4.10 Extracting

The extracting section is:

safety_time = 1 # Temporal zone around which spikes are isolated [in ms]
max_elts = 10000 # Max number of events per templates (should be compatible
→˓with nb_elts)
nb_elts = 0.8 # Fraction of max_elts that should be obtained per
→˓electrode [0-1]
output_dim = 5 # Percentage of variance explained while performing PCA
cc_merge = 0.975 # If CC between two templates is higher, they are merged
noise_thr = 0.8 # Minimal amplitudes are such than amp*min(templates) <
→˓noise_thr*threshold

This is an experimental section, not used by default in the algorithm, so nothing to be changed here

2.4.11 Validating

The validating section is:

34 Chapter 2. Launching the code

SpyKING CIRCUS Documentation, Release 0.8.2

nearest_elec = auto # Validation channel (e.g. electrode closest to the ground
→˓truth cell)
max_iter = 200 # Maximum number of iterations of the stochastic gradient
→˓descent (SGD)
learning_rate = 1.0e-3 # Initial learning rate which controls the step-size of
→˓the SGD
roc_sampling = 10 # Number of points to estimate the ROC curve of the BEER
→˓estimate
test_size = 0.3 # Portion of the dataset to include in the test split
radius_factor = 0.5 # Radius factor to modulate physical radius during
→˓validation
juxta_dtype = uint16 # Type of the juxtacellular data
juxta_thresh = 6 # Threshold for juxtacellular detection
juxta_valley = False # True if juxta-cellular spikes are negative peaks
juxta_spikes = # If none, spikes are automatically detected based on
→˓juxta_thresh
filter = True # If the juxta channel need to be filtered or not
make_plots = png # Generate sanity plots of the validation [Nothing or None
→˓if no plots]

Please get in touch with us if you want to use this section, only for validation purposes. This is an implementation of
the BEER metric

2.5 Supported File Formats

To get the list of supported file format, you need to do:

>> spyking-circus help -i
------------------------- Informations -------------------------
| The file formats that are supported are:
|
| -- RAW_BINARY (read/parallel write)
| Extensions :
| Supported streams: multi-files
| -- MCS_RAW_BINARY (read/parallel write)
| Extensions : .raw, .dat
| Supported streams: multi-files
| -- HDF5 (read/write)
| Extensions : .h5, .hdf5
| Supported streams: multi-files
| -- OPENEPHYS (read/parallel write)
| Extensions : .openephys
| Supported streams: multi-folders
| -- KWD (read/write)
| Extensions : .kwd
| Supported streams: multi-files, single-file
| -- NWB (read/write)
| Extensions : .nwb, .h5, .hdf5
| Supported streams: multi-files
| -- NIX (read/write)
| Extensions : .nix, .h5, .hdf5
| Supported streams: multi-files
| -- ARF (read/write)
| Extensions : .arf, .hdf5, .h5
| Supported streams: multi-files, single-file

(continues on next page)

2.5. Supported File Formats 35

SpyKING CIRCUS Documentation, Release 0.8.2

(continued from previous page)

| -- BRW (read/write)
| Extensions : .brw
| Supported streams: multi-files
| -- NUMPY (read/parallel write)
| Extensions : .npy
| Supported streams: multi-files
| -- RHD (read/parallel write)
| Extensions : .rhd
| Supported streams: multi-files
| -- NEURALYNX (read/parallel write)
| Extensions : .ncs
| Supported streams: multi-files, multi-folders
| -- BLACKROCK (read only)
| Extensions : .ns1, .ns2, .nss3, .ns4, .ns5, .ns6
| Supported streams: multi-files
| -- MDA (read/parallel write)
| Extensions : .mda
Supported streams: multi-files

This list will tell you what are the wrappers available, and you need to specify one in your configuration file with
the file_format parameter in the [data] section. To know more about the mandatory/optional parameters for a
given file format, you should do:

>> spyking-circus raw_binary -i
------------------------- Informations -------------------------
| The parameters for RAW_BINARY file format are:
|
| -- sampling_rate -- <type 'float'> [** mandatory **]
| -- data_dtype -- <type 'str'> [** mandatory **]
| -- nb_channels -- <type 'int'> [** mandatory **]
|
| -- data_offset -- <type 'int'> [default is 0]
| -- dtype_offset -- <type 'str'> [default is auto]
| -- gain -- <type 'int'> [default is 1]
--

Note: Depending on the file format, the parameters needed in the [data] section of the parameter file can vary.
Some file format are self-contained, while some others need extra parameters to reconstruct the data. For all the needed
parameters, you need to add in the [data] section of the parameter file a line with parameter = value

Warning: As said after, only file format derived from raw_binary, and without streams are currently supported
by the phy and MATLAB GUI, if you want to see the raw data. All other views, that do not depend on the raw
data, will stay the same, so you can still sort your data.

2.5.1 Neuroshare support

Some of the file formats (plexon, . . .) can be accessed only if you have the neuroshare library installed. Note that
despite a great simplicity of use, this library provides only very slow read access and no write access to the file formats.
Therefore, this is not an efficient wrapper, and it may slow down considerably the code. Feel free to contribute if you
have better ideas about what to do!

36 Chapter 2. Launching the code

https://pythonhosted.org/neuroshare/

SpyKING CIRCUS Documentation, Release 0.8.2

2.5.2 Multi-Channel support

To be able to read efficiently native mcd files, you must have the pymcstream python package installed. This is a
cross-platform packages (Windows/Mac/Linux) and the installation procedure can be found on the webwsite.

2.5.3 HDF5-like file

This should be easy to implement any HDF5-like file format. Some are already available, feel free to add yours. Note
that to allow parallel write with HDF5, you must have a version of HDF5 compiled with the MPI option activated.
This means that you need to do a manual install.

2.5.4 Raw binary File

The simplest file format is the raw_binary one. Suppose you have N channels

𝑐0, 𝑐1, ..., 𝑐𝑁

And if you assume that 𝑐𝑖(𝑡) is the value of channel 𝑐𝑖 at time t, then your datafile should be a raw file with values

𝑐0(0), 𝑐1(0), ..., 𝑐𝑁 (0), 𝑐0(1), ..., 𝑐𝑁 (1), ...𝑐𝑁 (𝑇)

This is simply the flatten version of your recordings matrix, with size N x T

Note: The values can be saved in your own format (int16, uint16, int8, float32). You simply need to specify
that to the code

As you can see by typing:

>> spyking-circus raw_binary -i
------------------------- Informations -------------------------
| The parameters for RAW_BINARY file format are:
|
| -- sampling_rate -- <type 'float'> [** mandatory **]
| -- data_dtype -- <type 'str'> [** mandatory **]
| -- nb_channels -- <type 'int'> [** mandatory **]
|
| -- data_offset -- <type 'int'> [default is 0]
| -- dtype_offset -- <type 'str'> [default is auto]
| -- gain -- <type 'int'> [default is 1]
--

There are some extra and required parameters for the raw_binary file format. For example, you must specify
the sampling rate sampling_rate, the data_dtype (int16, float32, . . .) and also the number of channels
nb_channels. The remaining parameters are optional, i.e. if not provided, default values written there will be used.
So the mydata.params file for a mydata.dat raw binary file will have the following params in the [data]
section:

file_format = raw_binary
sampling_rate = XXXX
data_dtype = XXXX # should be int16,uint16,float32,...
nb_channels = XXXX # as it can not be guessed from the file, it has to be specified
data_offset = XXXX # Optional, if a header with a fixed size is present
gain = XXXX # Optional, if you want a non unitary gain for the channels

2.5. Supported File Formats 37

https://bitbucket.org/galenea/pymcstream/src

SpyKING CIRCUS Documentation, Release 0.8.2

Warning: The raw_binary file format is the default one used internally by SpyKING CIRCUS when the flag
overwrite is set to False. This means several things

• data are saved as float32, so storage can be large

• we can not handle properly t_start parameters if there are streams in the original data. Times will be contin-
uous

• this is currently the only file format properly supported by phy and MATLAB GUIs, if you want to see the
raw data

2.6 Sanity plots

In order to have a better feedback on what the algorithm is doing, and especially the clustering phase, the code can
produce sanity plots that may be helpful to troubleshoot. This is the flag make_plots in the clustering section
of the parameter files (see the configuration section documentation on MPI). All plots will be stored in the folder
path/mydata/plots

Note: If you do not care about those plots, you can set to None the make_plots entries in the configuration file,
and this will speed up the algorithm

2.6.1 View of the activity

The best way to visualize the activity on your electrodes, and to see if data are properly loaded or if results are making
any sense is to use the devoted python GUI and the preview mode (see the visualization section on Python GUI)

2.6.2 Views of the Clusters

During the clustering phase, the algorithm will save files names cluster_i where i is the number of the electrode.
A typical plot will look like that

On the two plots in the left column, you can see the rho vs delta plots (see [Rodriguez et Laio, 2014]). Top plots shows
the centroids that have been selected, and bottom plots shows in red all the putative centers that were considered by
the algorithm.

On the 4 plots on the rights, this is a 3D projection of all the spikes collected by that electrode, projected along different
axes: x vs y, y vs z and x vs z.

Note: If, in those plots, you see clusters that you would have rather split, and that do not have different color, then this
is likely that the clustering algorithm had wrong parameters. Remember that in the configuration file max_clusters
controls the maximal number of clusters per electrodes that will be searched (so you may want to increase it if clus-
tering is not accurate enough), and that sim_same_elec will control how much similar clusters will be merged. So
again, decrease it if you think you are losing some obvious clusters.

2.6.3 Views of the waveforms

At the end of the clustering phase, the algorithm will save files names waveform_i where i is the number of the
electrode. A typical plot will look like that

38 Chapter 2. Launching the code

http://www.sciencemag.org/content/344/6191/1492.short

SpyKING CIRCUS Documentation, Release 0.8.2

Fig. 2: A view on the clusters detected by the algorithm, on a given electrode

2.6. Sanity plots 39

SpyKING CIRCUS Documentation, Release 0.8.2

Fig. 3: A view on the templates, on a given electrode

40 Chapter 2. Launching the code

SpyKING CIRCUS Documentation, Release 0.8.2

On this plot, you should get an insight on the templates that have been computed out of the clustering phase. For all
the clusters detected on that given electrode, you should see all the waveforms peaking on that particular electrode,
and the template, in red (in blue, this is the min and max amplitudes allowed during the fitting procedure). Note that
if template is not aligned with the waveforms, this is normal. The templates are aligned on the electrodes were they
have an absolute min. Here you are just looking at them on a particular electrode. The key point is that, as you can
see, templates should all go below threshold on that particular electrode (dash-dotted line). When the template is flat,
it means that it has been removed from the dictionary, because of time shifting and duplication elsewhere.

2.7 Processing streams of data

It is often the case that, during the same recording session, the experimentalist records only some temporal chunks and
not the whole experiment. However, because the neurons are the same all over the recording, it is better to process
them as a single datafile. The code can handle such streams of data, either from multiple sources (several data files),
or within the same source if supported by the file format (chunks in a single file).

2.7.1 Chunks spread over several files

You can use the multi-files stream mode in the [data] section.

Note: If you just want to process several independent files, coming from different recording sessions, you need to use
the batch mode (see the documentation on the parameters)

For the sake of clarity, we assume that all your files are labelled

• mydata_0.extension

• mydata_1.extension

• . . .

• mydata_N.extension

Launch the code on the first file:

>> spyking-circus mydata_0.extension

The code will create a parameter file, mydata_0.params. Edit the file, and in the [data] section, set
stream_mode to multi-files. Relaunch the code on the first file only:

>> spyking-circus mydata_0.extension

The code will now display something like:

##
Welcome to the SpyKING CIRCUS
#####
Written by P.Yger and O.Marre
##

Steps : fitting
GPU detected : True
Number of CPU : 12
Number of GPU : 6
Shared Memory : True

(continues on next page)

2.7. Processing streams of data 41

SpyKING CIRCUS Documentation, Release 0.8.2

(continued from previous page)

Parallel HDF5 : False
Hostfile : /home/spiky/spyking-circus/circus.hosts

##

------------------------- Informations -------------------------
| Number of recorded channels : 256
| Number of analyzed channels : 256
| Data type : uint16
| Sampling rate : 20 kHz
| Header offset for the data : 1881
| Duration of the recording : 184 min 37 s
| Width of the templates : 5 ms
| Spatial radius considered : 250 um
| Stationarity : True
| Waveform alignment : True
| Skip strong artefacts : True
| Template Extraction : median-raw
Streams : multi-files (19 found)

The key line here is the one stating that the code has detected 19 files, and will process them as a single one.

Note: The multi-files mode assumes that all files have the same properties: mapping, data type, data offset, . . . It has
to be the case if they are all coming from the same recording session

While running, in its first phase (filtering), two options are possible:

• if your file format allows write access, and overwrite is set to True in the data section, then every
individual data file will be overwritten and filtered on site

• if your file format does not allow write access, or overwrite is False, the code will filter and con-
catenate all files into a new file, saved as a float32 binary file called mydata_all_sc.extension.
Templates are then detected onto this single files, and fitting is also applied onto it.

2.7.2 Chunks contained in several folders

For some particular file formats (i.e. openephys), all the data are stored within a single folder, and your experiment
may be split over several folders. In order to deal with that, the code can virtually concatenate files found in several
folders, using the mode multi-folders. When activating such a mode for the stream_mode, the code will
search for all folders, at the root of the file currently used, and will search inside all of them if compatible recordings
can be found. If yes, they will all be concatenated virtually, such that all the folders are processed as a whole

2.7.3 Chunks contained in the same datafile

For more complex data structures, several recordings sessions can be saved within the same datafile. Assuming the
file format allows it (see the documentation on the file formats), the code can still stream all those chunks of data in
order to process them as a whole. To do so, use exactly the same procedure as below, except that the stream_mode
may be different, for example single-file.

2.7.4 Visualizing results from several streams

42 Chapter 2. Launching the code

SpyKING CIRCUS Documentation, Release 0.8.2

Multi-files

As said, results are obtained on a single file mydata_all.extension, resulting of the concatenation of all the
individual files. So when you are launching the GUI:

>> circus-gui-matlab mydata_0.extension

what you are seeing are all the spikes on all files. Here you can delete/merge templates, see the devoted GUI section
for that (GUI). Note that you need to process data in such a manner, because otherwise, if looking at all results
individually, you would have a very hard time keeping track of the templates over several files. Plus, you would
not get all the information contained in the whole recording (the same neuron could be silent during some temporal
chunks, but spiking during others).

2.7.5 Getting individual results from streams

Once your manual sorting session is done, you can simply split the results in order to get one result file per data file.
To do so, simply launch:

>> circus-multi mydata_0.extension

This will create several files

• mydata_0.results.hdf5

• mydata_1.results.hdf5

• . . .

• mydata_N.results.hdf5

In each of them, you’ll find the spike times of the given streams, between 0 and T, if T is the length of file i.

2.8 Dealing with stimulation artefacts

Sometimes, because of external stimulation, you may end up having some artefacts on top of your recordings. For
example, in case of optogenetic stimulation, shinning light next to your recording electrode is likely to contaminate
the recording. Or it could be that those artefacts are simply affecting some portions of your recordings that you would
like easily to ignore. The code has several built-in mechanisms to deal with those artefacts, in the triggers section
of the parameter file.

2.8.1 Ignore some portions of the recording

You can decide to ignore some portions of the recordings, because they are corrputed by artefacts.

Setting dead periods

In a text file, you must specify all the portions [t_start, t_stop] that you want to exclude from analysis. The times can
be given in ms or in timesteps, and this can be changed with the dead_unit parameter. By default, they are assumed
to be in ms. Assuming we want to exclude the first 500ms of every second, such a text file will look like:

2.8. Dealing with stimulation artefacts 43

SpyKING CIRCUS Documentation, Release 0.8.2

0 500
1000 1500
2000 2500
...
10000 10500

All t_start/t_stop times here in the text file are in ms, and you must use one line per portion to exclude. Use
dead_unit if you want to give times in timesteps.

How to use it

Once this file have been created, you should provide them in the [triggers] section of the code (see here) with the
dead_file parameter. You should then activate the option ignore_times by setting it to True. Once the code
is launched, all steps (whitening/clustering/fitting) will only work on spikes that are not in the time periods defined by
the dead_file.

2.8.2 Substract regularly occuring artefacts

In a nutshell, the code is able, from a list of stimulation times, to simply compute an median-based average artefact,
and substract it automatically to the signal during the filtering procedure.

Setting stimulation times

In a first text file, you must specify all the times of your artefacts, identified by a given identifier. The times can be
given in ms or in timesteps, and this can be changed with the trig_unit parameter. By default, they are assumed
to be in ms. For example, imagine you have 2 different stimulation protocols, each one inducing a different artefact.
The text file will look like:

0 500.2
1 1000.2
0 1500.3
1 2000.1
...
0 27364.1
1 80402.4

This means that stim 0 is displayed at 500.2ms, then stim 1 at 1000.2ms, and so on. All times in the text file are in ms,
and you must use one line per time. Use trig_unit if you want to give times in timesteps.

Setting time windows

In a second text file, you must tell the algorithm what is the time window you want to consider for a given artefact.
Using the same example, and assuming that stim 0 produces an artefact of 100ms, while stim 1 produces a longer
artefact of 510ms, the file should look like:

0 100
1 510

Here, again, use trig_unit if you want to provide times in timesteps.

44 Chapter 2. Launching the code

SpyKING CIRCUS Documentation, Release 0.8.2

How to use it

Once those two files have been created, you should provide them in the [triggers] section of the code (see here)
with the trig_file and trig_windows parameters. You should then activate the option clean_artefact by
setting it to True before launching the filtering step. Note that by default, the code will produce one plot by artefact,
showing its temporal time course on all channels, during the imposed time window. This is what is substracted, at all
the given times for this unique stimulation artefact.

Fig. 4: Example of a stimulation artefact on a 252 MEA, substracted during the filtering part of the algorithm.

Note: If, for some reasons, you want to relaunch this step (too small time windows, not enough artefacts, . . .) you
will need to copy again the raw data before relaunching the filtering. This is because remember that the raw data are
always filtered on-site.

2.9 Automatic Merging

2.9.1 Need for an meta merging step

Because for high number of channels, the chance that a cell can be split among several templates are high, one need
to merge putative templates belonging to the same cells. This is a classical step in most of the spike sorting technique,

2.9. Automatic Merging 45

SpyKING CIRCUS Documentation, Release 0.8.2

and traditionally, this step was performed by a human operator, reviewing all templates one by one. Problem is that
with the new generation of dense probes that the code can handle (4225 channels), the output of the algorithm can lead
to more than 1000 templates, and one can not expect a human to go through all pairs iteratively.

To automatize the procedure, we developed a so-called meta-merging step that will allow to quickly identify pairs of
templates that have to be merged. To do so, first, we consider only pairs that have a similarity between their templates
higher than cc_overlap. This allow not to considerate all the possible pairs, but only those that are likely to be the
same cells, because their templates are similar.

2.9.2 Comparison of CrossCorrelograms

Then, for all those pairs of cells, we are computing the cross-correlation function in a time window of [-100, 100] ms,
with a particular time bin cc_bin. The rationale behind is that a pair of template that should be merged should have
a dip in the center of its cross-correlogram. To quantify that in an automated manner, we compute a control cross-
correlogram in the same window of interest, but by reverting in time the spikes of cell 2. This allow us to compare
the normal cross-correlogram between the two cells to a “control” one, keeping the same amount of correlation (see
Figure).

Fig. 5: Difference between a normal cross-correlogram for a given pair of cells, and a control version where the spikes
from the second cells are reversed in time. The center area in between the red dash dotted line is the one of interest.

To quantify the dip, we measure the difference between the cross correlogram and its shuffled version in a window of
interest [-cc_average, cc_average].

46 Chapter 2. Launching the code

SpyKING CIRCUS Documentation, Release 0.8.2

2.9.3 An iterative procedure with a dedicated GUI

We design a Python GUI to quickly visualize all those values and allow human to quickly performs all merges that
need to be done. To launch it, with N processors, you need to do:

>> spykig-circus mydata.extension -m merging -c N

The GUI is still an ongoing work, so any feedbacks are welcome, but the idea is to show, in a single plot, all the
putative pairs of cells that have to be merged. As can be seen in the top left panel, every point is a pair of neuron,
and x-axis in the upper left panel shows the template similarity (between cc_merge and 1), while y-axis show the
normalized difference between the control CC and the normal CC (see above). In the bottom left plot, this is the same
measure on the y-axis, while the x-axis only shows the CC of the Reverse Cross-Correlogram. Any pairs along the
diagonal are likely to be merged

Fig. 6: Meta-merging GUI

Selecting pairs

Each time you click on a given pairs (or select a group of them with the rectangle or lasso selector), the corresponding
Cross-Correlogram are shown in the top right panel (and in dash-dotted line, this is the control). As you can see, there
is a clear group of pairs that have a high template similarity > 0.9, and a high value for the CC metric >0.5. So we can
select some of them

If you think that all those pairs should be merged, you just need to click on the Select Button, and then on Merge.
Once the merge is done, the GUI will recompute values and you can iterate the process

Note: The Suggest Pairs button suggests you pairs of neurons that have a template similarity higher than 0.9,
and a high value for the CC metric

2.9. Automatic Merging 47

SpyKING CIRCUS Documentation, Release 0.8.2

Fig. 7: Meta-merging GUI with several pairs that are selected

Changing the lag

By default, the CC metric is computed within a temporal window of [-5, 5] ms. But this value can be changed if you
click on the Set Window Button. In the bottom right panel, you see all the CC for all pairs. You can change the way
you want them to be sorted, and you can also click there to select some particular pairs.

Correcting for temporal lags while merging templates

By default, in the GUI, when a merge between two templates is performed, the spikes of the destroyed template are
just assigned to the one that is kept. This is a valid assumption is most cases. However, if you want to be more
accurate, you need to take into account a possible time shift between the two templates. This is especially True if
you are detecting both positive and negative peaks. If a template is large enough to cross both positive and negative
thresholds, two time shifted versions of the same template could exist. One will be centered on the positive peak, and
one centered on the negative peak. So when you merge them, you need to apply to the spikes this time shift between
the templates. This can be done if you set the correct_lag flag in the [merging] section of the parameter file
to True.

Exploring Templates

In the middle, top plot, you can see on the x-axis the ratio between the peak of the template, and the detection threshold
on its preferred electrode, and on the y-axis the number of spikes for that given templates. If you click on those points,
you’ll see in the middle bottom plot the template waveform on its preferred electrode.

Note: The Suggest Templates button suggests you templates that have a peak below or just at the detection
threshold. Those templates can exist, because of noise during the clustering phase. They are likely to be False

48 Chapter 2. Launching the code

SpyKING CIRCUS Documentation, Release 0.8.2

templates, because the detection thresholds may have been set too low

Fig. 8: Meta-merging GUI with several templates that are selected

You can then delete those templates, and the GUI will recompute the scores for all pairs.

Saving the results

When you think all merges have been done, you just need to press the Finalize Button. This will save everything
to file, without overwriting your original results. In fact, it will create new files with the suffix -merged, such that
you need to use that suffix after if you want to view results in the GUI. Thus, if you want to convert/view those results
after, you need to do:

>> circus-gui-matlab mydata.extension -e merged

2.9. Automatic Merging 49

SpyKING CIRCUS Documentation, Release 0.8.2

50 Chapter 2. Launching the code

CHAPTER 3

Using the GUI

3.1 A graphical launcher

For those that do not like the use of a command line, the program now integrates a standalone GUI that can be launched
by simply doing:

>> spyking-circus-launcher

3.2 Quick preview GUIs

3.2.1 Preview GUI

In order to be sure that the parameters in configuration file are correct, and before launching the algorithm that will
filter the data on-site (and thus mess with them if parameters are wrong), one can use the preview GUI. To do so,
simply do:

>> spyking-circus path/mydata.extension -p

The GUI will display you the electrode mapping, and the first second of the data, filtered, with the detection thresholds
as dashed dotted lines. You can then be sure that the value of spike_thresh used in the parameter file is correct for your
own data.

Once you are happy with the way data are loaded, you can launch the algorithm.

Note: You can write down the value of the threshold to the configuration file by pressing the button Write thresh
to file

51

SpyKING CIRCUS Documentation, Release 0.8.2

Fig. 1: The GUI of the software. All operations described in the documentation can be performed here

52 Chapter 3. Using the GUI

SpyKING CIRCUS Documentation, Release 0.8.2

Fig. 2: A snapshot of the preview GUI. You can click/select one or multiple electrodes, and see the 1s of the activity,
filtered, on top with the detection threshold

3.2.2 Result GUI

In order to quickly visualize the results of the algorithm, and get a qualitative feeling of the reconstruction, you can
see use a python GUI, similar to the previous one, showing the filtered traces superimposed with the reconstruction
provided by the algorithm. To do so, simply do:

>> spyking-circus path/mydata.extension -r

Warning: If results are not there yet, the GUI will only show you the filtered traces

Note: You can show the residuals, i.e. the differences between the raw data and the reconstruction by ticking the
button Show residuals

3.2.3 Meta-Merging GUI

See the devoted section on Meta-Merging (see Automatic Merging)

3.3 Launching the visualization GUIs

You have several options and GUIs to visualize your results, just pick the one you are the most comfortable with!

3.3. Launching the visualization GUIs 53

SpyKING CIRCUS Documentation, Release 0.8.2

Fig. 3: A snapshot of the result GUI. You can click/select one or multiple electrodes, and see the the activity, filtered,
on top with the reconstruction provided by the template matching algorithm (in black)

3.3.1 Matlab GUI

Installing MATLAB

SpyKING CIRUCS will assume that you have a valid installation of MATLAB, and that the matlab command can be
found in the system $PATH. For windows user, please have a look to this howto. For unix users (mac or linux), simply
add the following line to your .bash_profile or .bashrc file, in your $HOME directory:

export $PATH=$PATH:/PATH_TO_YOUR_MATLAB/bin/matlab

Then relaunch the terminal

Launching the MATLAB GUI

To launch the MATLAB GUI provided with the software, you need of course to have a valid installation of MATLAB,
and you should be able to simply do:

>> circus-gui-matlab path/mydata.extension

Note that in a near future, we plan to integrate all the views of the MATLAB GUI into phy

To reload a particular dataset, that have been saved with a special suffix, you just need to do:

>> circus-gui-matlab path/mydata.extension -e suffix

This allows you to load a sorting session that has been saved and not finished. Also, if you want to load the results
obtained by the Meta Merging GUI, you need to do:

54 Chapter 3. Using the GUI

https://helpdeskgeek.com/windows-10/add-windows-path-environment-variable/
http://fr.mathworks.com/products/matlab/
http://fr.mathworks.com/products/matlab/
http://fr.mathworks.com/products/matlab/
https://github.com/cortex-lab/phy

SpyKING CIRCUS Documentation, Release 0.8.2

>> circus-gui-matlab path/mydata.extension -e merged

3.3.2 Phy GUI

To launch the phy GUI (pure python based using opengl), you need a valid installation of phy 2.0 and phylib.

Installing phy 2.0

If you want to use the phy GUI to visualize your results, you may need to install phy 2.0:

>> pip install colorcet pyopengl joblib
>> pip install --upgrade http://github.com/cortex-lab/phy/archive/dev.zip
>> pip install --upgrade http://github.com/cortex-lab/phylib/archive/master.zip

Launching the phy 2.0 GUI

If phy 2.0 is installed, you should be able to simply do:

>> spyking-circus path/mydata.extension -m converting -c N

Followed by:

>> circus-gui-python path/mydata.extension

As you see, first, you need to export the data to the phy format using the converting option (you can use several
CPUs with the -c flag if you want to export a lot of Principal Components). This is because as long as phy is still
under development, this is not the default output of the algorithm. Depending on your parameters, a prompt will ask
you if you want to compute all/some/no Principal Components for the GUI. While it may be interesting if you are
familiar with classical clustering and PCs, you should not consider exploring PCs for large datasets.

Note: If you want to export the results that you have processed after the Meta Merging GUI, you just need to specify
the extension to choose for the export:

>> spyking-circus path/mydata.extension -m converging -e merged
>> circus-gui-python path/mydata.extension -e merged

3.4 Panels of the GUIs

In the following, we will mostly talk about the MATLAB GUI, because it is still the default one for the algorithm, but
all the concepts are similar across all GUIs.

Warning: The phy GUI is way nicer, but is currently still under active development. We are not responsible for
the possible bugs that may be encountered while using it.

3.4. Panels of the GUIs 55

https://github.com/cortex-lab/phy
https://github.com/cortex-lab/phy
https://github.com/cortex-lab/phylib
https://github.com/cortex-lab/phy
https://github.com/cortex-lab/phy
https://github.com/cortex-lab/phy

SpyKING CIRCUS Documentation, Release 0.8.2

Fig. 4: A view of the MATLAB GUI

3.4.1 Matlab GUI

As you can see, the GUI is divided in several panels:

• A A view of the templates

• B A view of the features that gave rise to this templates

• C A view of the amplitudes over time

• D A view for putative repeats, depending on your stimulation

• E A view of the Inter Spike Interval Distribution, for that given template

• F A view of the Auto/Cross Correlation (Press Show Correlation)

To know more about what to look in those views, see Basis of Spike Sorting

Note: At any time, you can save the status of your sorting session, by pressing the Save Button. The suffix next to
that box will be automatically added to the data, such that you do not erase anything.

To reload a particular dataset, that have been saved with a special suffix, you just need to do:

>> circus-gui path/mydata.extension -e suffix

3.4.2 Python GUI

To know more about how to use phy and phylib, see the devoted websites. If you want to have a exhaustive description
of the sorting workflow performed with phy, please see the phy documentation.

56 Chapter 3. Using the GUI

http://fr.mathworks.com/products/matlab/
https://github.com/cortex-lab/phy
https://github.com/cortex-lab/phylib
https://github.com/cortex-lab/phy
https://phy.readthedocs.io/en/latest/

SpyKING CIRCUS Documentation, Release 0.8.2

Fig. 5: A view of the Python GUI, derived from phy, and oriented toward template matching algorithm. To use it, you
need a valid version of phy, and phylab_

3.5 Basis of spike sorting

In this section, we will review the basis of spike sorting, and the key operations that are performed by a human operator,
in order to review and assess the quality of the data. The goal here is not to cover all the operations that one need to
do when doing spike sorting, but rather to show you how key operations can be performed within the MATLAB GUI.
If you want to have a similar description of those steps with phy, please see the phy documentation.

Note: All operations are similar across GUIs, so the key concepts here can be transposed to python/phy GUIs.

3.5.1 Viewing a single template

The algorithm outputs different templates. Each corresponds to the average waveform that a putative cell evokes on
the electrodes. The index of the template displayed is on the top right corner. The index can be changed by typing a
number on the box or clicking on the plus / minus buttons below it.

The large panel A shows the template on every electrode. You can click on the Zoom in and Zoom out buttons to
get a closer look or step back. To adjust the view, you can change the scaling factor for the X and Y axis by changing
the values in the X scale and Y scale boxes just next to the template view. Reset will restore the view to the
default view. Normalize will automatically adapt the scale to see the most of your template.

Panel B shows the cluster from which this template has been extracted. Unless you want to redefine the cluster, you
don’t have to worry about them. You just need to check that the clustering did effectively split clusters. If you see here
what you think are two clusters that should have been split, then maybe the parameters of the clustering need to be
adjusted (see documentation on parameters)

3.5. Basis of spike sorting 57

https://github.com/cortex-lab/phy
https://github.com/cortex-lab/phy
http://fr.mathworks.com/products/matlab/
https://github.com/cortex-lab/phy
http://phy-contrib.readthedocs.io/en/latest/template-gui/

SpyKING CIRCUS Documentation, Release 0.8.2

Fig. 6: A view of the templates

58 Chapter 3. Using the GUI

SpyKING CIRCUS Documentation, Release 0.8.2

Fig. 7: A view of the features

Fig. 8: A view of the Inter-Spike Intervals and the AutoCorrelation

3.5. Basis of spike sorting 59

SpyKING CIRCUS Documentation, Release 0.8.2

Panel E shows the ISI (inter spike interval). You can look at it from 0 to 25 ms, or from 0 to 200 ms if the button Big
ISI is clicked. Above this panel, the % of refractory period violation is indicated, and a ratio indicates the number of
violations / the total number of spikes. Panel F shows the auto-correlation, and you can freely change the time bin.

Note: If you are viewing two templates (see below), then Panel E shows combined ISI for the two templates, and
Panel F shows the Cross-Correlogram between the two templates

3.5.2 Cleaning a template

Fig. 9: A view of the amplitudes over time

The template is matched all over the data, with a different amplitude each time. Each point of panel C represents a
match, the y-axis is the amplitude, and x-axis the time. When there is a refractory period violation (two spikes too
close), the bigger spike appears as a yellow point, and the smaller one in green. The 3 grey lines correspond to the
average amplitude, the minimal amplitude and the maximal one.

Many templates should have a large number of amplitudes around 1, as a sanity check that the template matching
algorithm is working. However, sometimes, some others can have amplitude that may be anormally small or large.
These latter points are usually “wrong matches”: they don’t correspond to real occurrences of the template. Rather,
the algorithm just fitted noise here, or the residual that remains after subtracting templates. Of course, you don’t want
to consider them as real spikes. So these amplitudes need to be separated from the other ones and removed.

Note: The minimal amplitude is now automatically handled during the fitting procedure, so there should be no need
for adjusting the lower amplitude

For this purpose, you need to define the limits of the area of good spikes. To define the minimal amplitude, click on
the button Set Min, and then click on the panel D. The gray line corresponding to the minimal amplitude will be
adjusted to pass by the point on which you click. The process holds for Set Max.

In some cases, for long recordings where you have a drift, you would like to have an amplitude threshold varying over
time. To do so, you need to define first an average amplitude over time. Click on Define Trend and see if the
grey line follows the average amplitude over time. If not, you can try to modify the number right next to the button:
if its value is 10, the whole duration will be divided in 10 intervals, and the median amplitude will be over each of
these intervals. Alternatively, you can define this average over time manually by clicking on the Define Trend
Manually button, then click on all the places by which this trend should pass in panel D, and then press enter.

Once you have set the amplitude min and max correctly, you can split your template in two by clicking on the Split
from Lims button. The template will be duplicated. One template will only keep the points inside these limits, the
other ones will keep the points outside.

60 Chapter 3. Using the GUI

SpyKING CIRCUS Documentation, Release 0.8.2

3.5.3 Viewing two templates

All these panels can also be used to compare two templates. For this, define the second template in the Template
2 box (top right), and click on the button View 2. This button switches between viewing a single template or
viewing two at the same time, in blue and red. In E, you will get the ISI of the merged spike trains, and in F the
cross-correlogram between the two cells.

Suggestion of matches

At any time, you can ask the GUI to suggest you the closest template to the one you are currently looking at, by
clicking on Suggest Similar. By default, the GUI will select the best match among all templates. If the box
Same Elec is ticked, then the GUI will give you only the best matches on that electrode. You should then be able to
see, in the feature space (Panel B), the two distinct clusters. Otherwise, because templates are from point gathered on
different electrodes, this comparison does not make sense. If you want to see the N - th best match, just enter N in the
input box next to the Suggest Similar Button.

Merging two templates

Very often a single cell is split by the algorithm into different templates. These templates thus need to be merged.
When you are looking at one cell, click on the Suggest similar button to compare it to templates of similar
shape. If the number next to this button, you will compare it to the most similar one, if it is 2, to the second most
similar one, and so on. You will be automatically switched to the View 2 mode (see above). In the middle left, a
number between 0 and 1 indicates a coefficient of similarity between the two templates (1=perfect similarity). By
ticking the Normalize box, the two templates will be normalized to the same maximum.

There are many ways to decide if two templates should be merged or not, but most frequently people look at the cross-
correlogram: if this is the same cell, there should be a clear dip in the middle of the cross-correlogram, indicating that
two spikes of the two templates cannot be emitted to too close to each other, and thus respecting the refractory period.

Fig. 10: A view of the MATLAB GUI

3.5. Basis of spike sorting 61

SpyKING CIRCUS Documentation, Release 0.8.2

To merge the two templates together, click on the Merge button. The spikes from the two cells will be merged, and
only the template of the first one will be kept.

Note that the algorithm is rather on the side of over-dividing the cells into more templates, rather than the opposite,
because it is much easier to merge cells than to cluster them further. So you will probably need to do that many times.

Note: Have a look to the Meta Merging GUI, made to perform all obvious merges in your recordings more quickly
(see Automatic Merging)

3.5.4 Destroying a template

At any time, if you want to throw away a templates, because too noisy, you just need to click on the Button Kill.
The templates will be destroyed

Warning: There is currently no Undo button in the MATLAB GUI. So please consider saving regularly your
sorting session, or please consider using phy

3.5.5 Repeats in the stimulation

To display a raster, you need a file containing the beginning and end time of each repeat for each type of stimulus. This file should be a MATLAB file containing two variables, that should be MATLAB cell arrays:

• rep_begin_time{i}(j) should contain the start time of the j-th repeat for the i-th type of stimulus.

• rep_end_time{i}(j) should contain the end time of the j-th repeat for the i-th type of stimulus.

The times should be specified in sample numbers. These two variables should be stored as a mat file in a file called
path/mydata/mydata.stim, and placed in the same directory than the output files of the algorithm. If available,
it will be loaded by the GUI and help you to visualize trial-to-trial responses of a given template.

3.5.6 Give a grade to a cell

Once you have merged a cell and are happy about it, you can give it a grade by clicking on the O button. Clicking
several times on it will go through different letters from A to E. This extra information can be helpful depending on
the analysis you want to perform with your data.

3.5.7 Saving your results

To save the results of your post-processing, click on the Save button. A number of files will be saved, with the suffix
written in the box right next to the save button. To reload a given spike sorting session, just enter this suffix after the
file name when using the circus-gui-matlab command (see documentation on configuration file):

>> circus-gui-matlab mydata.extension -e suffix

62 Chapter 3. Using the GUI

http://fr.mathworks.com/products/matlab/
https://github.com/cortex-lab/phy
http://fr.mathworks.com/products/matlab/
http://fr.mathworks.com/products/matlab/

CHAPTER 4

Advanced Informations

4.1 Choosing the parameters

Only few parameters are likely to be modified by the user in the parameter file, depending on the type of data consid-
ered. If parameters are not optimal, the code may suggest you to change them. If you want to have a more precise
feedback for a given dataset, do not hesitate to ask question to our Google group https://groups.google.com/forum/#!
forum/spyking-circus-users, or contact us directly by email.

Note: The longer the recording, the better the code will work. If you have several chunks of recordings, you better
concatenate everything into a single large data file, and provide it to the algorithm. This can be done automatically
with the multi-file mode (see here). HOwever, for long recordings, you should turn on the smart_search
mode (see below).

4.1.1 In vitro

Retina

1. Templates observed are rather large, so N_t = 5ms is a decent value. If your final templates are smaller, you
should reduce this value, as it reduces the memory usage.

2. A spike can be seen up to 250um away from its initiation site, so this is the default radius you should have
either in your probe file, either in the parameters

3. Depending on the density of your array, we found that max_cluster=10 is a decent value. Few electrodes
have more than 10 distinct templates

4.1.2 In vivo

63

https://groups.google.com/forum/#!forum/spyking-circus-users
https://groups.google.com/forum/#!forum/spyking-circus-users

SpyKING CIRCUS Documentation, Release 0.8.2

Cortex/Hippocampus/Superior Colliculus

1. Templates observed are rather small, so N_t = 2/3ms is a decent value. Note that if your templates end up to
be smaller, you should reduce this value, as it reduces the memory usage.

2. A spike can be seen up to 100um away from its initiation site, so this is the default radius you should have
either in your probe file, either in the parameters

3. Depending on the density of your electrodes, we found that max_cluster=10/15 is a decent value.

Note: If you see too many templates that seems to be mixtures of two templates, this is likely because the au-
tomatic merges performed internally are too aggressive. You can change that by playing with the cc_merge and
sim_same_elec parameters (see the FAQ)

4.1.3 Low thresholds or long recordings

For long recordings, or if you have low thresholds and a lot of Multi-Unit Activity (MUA), you should consider turning
the smart_search mode in the clustering section to True. Such a mode may become the default in future
release. Instead of randomly selecting a subset of spikes on all channels, the smart search implements a rejection
method algorithm that will try to sample more uniformly all the amplitudes, in order to be sure that all spikes are
collected.

4.1.4 Not so dense probes

If you have single channel recordings, or electrodes that are spaced appart by more than 50um, then you should set the
cc_merge parameter in the [clustering] section to 1. Why? Because this parameter will ensure that templates
that are scaled copies are not merged automatically. When templates are only over few channels, amplitude is a
valuable information that you do not want to discard in order to separate them.

4.2 Writing your custom file wrapper

Since 0.5, SpyKING CIRCUS can natively read/write several file formats, in order to ease your sorting workflow. By
default, some generic file formats are already implemented (see the documentation on the file formats), but you can
also write your own wrapper in order to read/write your own custom datafile.

Note that we did not used neo, and we recommend not to do so, because your wrapper should have some functionalities not allowed yet by neo:

• it should allow memory mapping, i.e. to read only chunks of your data at a time, slicing either by time or
by channels.

• it should read data in their native format, as they will internally be turned into float32

• it could allow streaming, if data are internally stored in several chunks

To do so, you simply need to create an object that will inherit from the DataFile object described in circus/
files/datafile.py. The easy thing to understand the structure is to have a look to circus/files/
raw_binary.py as an example of such a datafile object. If you have questions while writing your wrapper, do
not hesitate to be in touch with us.

The speed of the algorithm may slow down a little, depending on your wrapper. For example, currently, we provide
an example of a wrapper based on neuroshare (mcd files). This wrapper is working, but slow and inefficient, because
the neuroshare API is slow on its own.

64 Chapter 4. Advanced Informations

https://github.com/NeuralEnsemble/python-neo
https://github.com/NeuralEnsemble/python-neo
http://neuroshare.sourceforge.net/index.shtml
http://neuroshare.sourceforge.net/index.shtml

SpyKING CIRCUS Documentation, Release 0.8.2

4.2.1 Mandatory attributes

Here are the class attributes that you must define:

description = "mydatafile" # Description of the file format
extension = [".myextension"] # extensions allowed
parallel_write = False # can be written in parallel (using the comm
→˓object)
is_writable = False # can be written
is_streamable = ['multi-files'] # If the file format can support streams of data [
→˓'multi-files' is a default, but can be something else]
_shape = None # The total shape of the data (nb time steps, nb
→˓channels) across streams if any
_t_start = None # The global t_start of the data (0 by default)
_t_stop = None # The final t_stop of the data, across all
→˓streams if any
_params = {} # The dictionary where all attributes will be
→˓saved

Note that the datafile objects has an internal dictionary _params that contains all the values provided by the Config-
uration Parser, i.e. read from the parameter file in the data section. For a given file format, you can specify:

This is a dictionary of values that need to be provided to the constructor, with
→˓the corresponding type
_required_fields = {}

This is the list of mandatory parameters, along with the type, that have to be specify in the parameter file, because they
can not be inferred from the header of your data file. For example:

_required_files = {'sampling_rate' : float, 'nb_channels' : int}

Then you can also specify some additional parameters, that may have a default value. If they are not provided in the
parameter file, this default value is used. For example:

This is a dictionary of values that may have a default value, if not provided to
→˓the constructor
_default_values = {'gain' : 1.}

At the end, there are 5 mandatory attributes that the code will require for any given file format. Those should be stored
in the _params dictionary:

• nb_channels

• sampling_rate

• data_dtype

• dtype_offset

• gain

4.2.2 Custom methods

Here is the list of the function that you should implement in order to have a valid wrapper

Basics IO

You must provide function to open/close the datafile:

4.2. Writing your custom file wrapper 65

SpyKING CIRCUS Documentation, Release 0.8.2

def _open(self, mode=''):
'''

This function should open the file
- mode can be to read only 'r', or to write 'w'

'''
raise NotImplementedError('The open method needs to be implemented for file

→˓format %s' %self.description)

def _close(self):
'''

This function closes the file
'''
raise NotImplementedError('The close method needs to be implemented for file

→˓format %s' %self.description)

Reading values from the header

You need to provide a function that will read data from the header of your datafile:

def _read_from_header(self):
'''

This function is called only if the file is not empty, and should fill the
→˓values in the constructor

such as _shape. It returns a dictionary, that will be added to self._params
→˓based on the constrains given by

required_fields and default_values
'''
raise NotImplementedError('The _read_from_header method needs to be implemented

→˓for file format %s' %self.description)

Such a function must:

• set _shape to (duration, nb_channels)

• set _t_start if not 0

• return a dictionary of parameters that will be used, given the constrains obtained from values in _re-
quired_fields and _default_values, to create the DataFile

Reading chunks of data

Then you need to provide a function to load a block of data, with a given size:

def read_chunk(self, idx, chunk_size, padding=(0, 0), nodes=None):
'''
Assuming the analyze function has been called before, this is the main function
used by the code, in all steps, to get data chunks. More precisely, assuming your
dataset can be divided in nb_chunks (see analyze) of temporal size (chunk_size),

- idx is the index of the chunk you want to load
- chunk_size is the time of those chunks, in time steps
- if the data loaded are data[idx:idx+1], padding should add some offsets,

in time steps, such that we can load data[idx+padding[0]:idx+padding[1]]
- nodes is a list of nodes, between 0 and nb_channels

'''

(continues on next page)

66 Chapter 4. Advanced Informations

SpyKING CIRCUS Documentation, Release 0.8.2

(continued from previous page)

raise NotImplementedError('The get_data method needs to be implemented for file
→˓format %s' %self.description)

Note that for convenience, in such a function, you can obtained local t_start, t_stop by using the method t_start,
t_stop = _get_t_start_t_stop(idx, chunk_size, padding) (see circus/files/
raw_binary.py for an example). This may be easier to slice your datafile. At the end, data must be returned as
float32, and to do so, you can also use the internal method _scale_data_to_float32(local_chunk)

Writing chunks of data

This method is required only if your file format is allowing write access:

def write_chunk(self, time, data):
'''

This function writes data at a given time.
- time is expressed in time step
- data must be a 2D matrix of size time_length x nb_channels

'''
raise NotImplementedError('The set_data method needs to be implemented for file

→˓format %s' %self.description)

4.2.3 Streams

Depending on the complexity of your file format, you can allow several ways of streaming into your data. The way to
define streams is rather simple, and by default, all files format can be streamed with a mode called multi-files.
This is the former multi-files mode that we used to have in 0.4 versions (see multi files):

def set_streams(self, stream_mode):
'''

This function is only used for file format supporting streams, and need to
→˓return a list of datafiles, with

appropriate t_start for each of them. Note that the results will be using the
→˓times defined by the streams.

You can do anything regarding the keyword used for the stream mode, but multi-
→˓files is implemented by default

This will allow every file format to be streamed from multiple sources, and
→˓processed as a single file.

'''

if stream_mode == 'multi-files':
dirname = os.path.abspath(os.path.dirname(self.file_name))
all_files = os.listdir(dirname)
fname = os.path.basename(self.file_name)
fn, ext = os.path.splitext(fname)
head, sep, tail = fn.rpartition('_')
mindigits = len(tail)
basefn, fnum = head, int(tail)
fmtstring = '_%%0%dd%%s' % mindigits
sources = []
to_write = []
global_time = 0
params = self.get_description()

(continues on next page)

4.2. Writing your custom file wrapper 67

SpyKING CIRCUS Documentation, Release 0.8.2

(continued from previous page)

while fname in all_files:
new_data = type(self)(os.path.join(os.path.abspath(dirname), fname),

→˓params)
new_data._t_start = global_time
global_time += new_data.duration
sources += [new_data]
fnum += 1
fmtstring = '_%%0%dd%%s' % mindigits
fname = basefn + fmtstring % (fnum, ext)
to_write += ['We found the datafile %s with t_start %s and duration %s

→˓' %(new_data.file_name, new_data.t_start, new_data.duration)]

print_and_log(to_write, 'debug', logger)
return sources

Note: When working with streams, you must always defined attributes (such as t_start, duration, . . .) that are
local, and defined only for each streams.

As you can see, set_streams is a function that given a stream_mode, will read the parameters and return a list of
DataFiles, created by slightly changing those parameters. In the case of multi-files, this is just a change in the
file names, but for some file formats, streams are embedded within the same data structure, and not spread over several
files. For example, if you have a look to the file circus/files/kwd.py you can see that there is also a mode
for streams call single-file. If this mode is enabled, the code will process all chunks of data in the HDF5 file,
sorted by their keys, as a single giant data file. This is a common situation in experiment. Chunks of data are recorded
at several times, but in the same data file. Because they are originating from the same experiment, they better be
processed as a whole.

Once those functions are implemented, you simply need to add your wrapper in the list defined in circus/files/
__init__.py. Or be in touch with us to make it available in the default trunk.

4.2.4 Parallelism

In all your wrappers, if you want to deal with parallelism and do read/write access that will depend on MPI, you have
access to an object comm which is the MPI communicator. Simply add at the top of your python wrapper:

from circus.shared.mpi import comm

And then have a look for example circus/files/hdf5.py to understand how this is used

4.2.5 Logs

In all your wrappers, if you want to log some informations to the log files (in addition to those logged by default in the
DataFile class), you can use the print_and_log function. Simply add at the top of your wrapper:

from circus.shared.messages import print_and_log
import logging
logger = logging.getLogger(__name__)

Then, if you want to log something, the syntax of such a function is:

68 Chapter 4. Advanced Informations

SpyKING CIRCUS Documentation, Release 0.8.2

>> print_and_log(list_of_lines, 'debug', logger)

4.3 Extra steps

The code comes with some additional methods that are not executed by default, but that could still be useful. You can
view them by simply doing:

>> spyking-circus -h

4.3.1 Merging

This option will launh the Meta merging GUI, allowing a fast merging of obvious pairs, based on some automatic
computations performed on the cross-correlograms. To launch it, simply use:

>> spyking-circus path/mydata.extension -m merging -c N

Note: This merging step will not affect your main results, and will generate additional files with the suffix merged.
You can launch it safely at the end of the fitting procedure, and try various parameters. To know more about how those
merges are performed, (see Automatic Merging). Note that after, if you want to visualize this merged result with the
GUIs, you need do use the -e parameter, such as for example:

>> circus-gui-matlab path/mydata.extension -e merged

4.3.2 Gathering

The more important one is the gathering option. This option allows you, while the fitting procedure is still running,
to collect the data that have already been generated and save them as a temporary result. This methods use the fact
that temporal chunks are processed sequentially, so you can, at any time, review what has already been fitted. To do
so, simply do:

>> spyking-circus path/mydata.extension -m gathering -c N

Warning: N must be equal to the number of nodes that are currently fitting the data, because you will collect the
results from all of them

Note that the data will be saved as if they were the final results, so you can launch the GUI and review the results. If
nodes have different speed, you may see gaps in the fitted chunks, because some may be slower than others. The point
of this gathering function is not to provide you an exhaustive view of the data, but simply be sure that everything
is working fine.

4.3.3 Converting

As already said in the GUI section, this function allows you to export your results into the phy format. To do so,
simply do:

4.3. Extra steps 69

https://github.com/cortex-lab/phy

SpyKING CIRCUS Documentation, Release 0.8.2

>> spyking-circus path/mydata.extension -m converting -c N

During the process, you have the option to export or not the Principal Components for all the spikes that have been
found, and phy will display them. Note that while this is safe to export all of them for small datasets, this will not
scale for very large datasets with millions of spikes.

Warning: For millions of spikes, we do not recommend to export all Principal Components. You can export only
some, but then keep in mind that you can not redefine manually your clusters in phy

4.3.4 Deconverting

This option will allow you to convert back your results from phy to the MATLAB GUI. This could be useful if you
want to compare results between the GUI, or if you need to switch because of missing functionnalities. To convert the
data, simply use:

>> spyking-circus path/mydata.extension -m deconverting

Note: If you worked with data and a particular extension, then you will need to specify the extension:

>> spyking-circus path/mydata.extension -m deconverting -e extension

4.3.5 Extracting

This option allows the user to get, given a list of spike times and cluster ids, its own templates. For example one
could perform the clustering with its own method, and given the results of its algorithms, extract templates and simply
launch the template matching part in order to resolve overlapping spikes. To perform such a workflow, you just need
to do:

>> spyking-circus path/mydata.extension -m extracting,fitting

Warning: This option has not yet been tested during the integration in this 0.4 release, so please contact us if you
are interested.

4.3.6 Benchmarking

This option allows the user to generate synthetic ground-truth, and assess the performance of the algorithm. We are
planning to move it into a proper testsuite, and make its usage more user friendly. Currently, this is a bit undocumented
and for internal use only.

In a nutshell, five types of benchmarks can be performed from an already processed file:

• fitting The code will select a given template, and inject multiple shuffled copies of it at various rates,
at random places

• clustering The code will select a given template, and inject multiple shuffled copies of it at various
rates and various amplitudes, at random places

70 Chapter 4. Advanced Informations

https://github.com/cortex-lab/phy
https://github.com/cortex-lab/phy

SpyKING CIRCUS Documentation, Release 0.8.2

• synchrony The code will select a given template, and inject multiple shuffled copies of it on the same
electrode, with a controlled pairwise correlation coefficient between those cells

• smart-search To test the effect of the smart search. 10 cells are injected with various rates, and one
has a low rate compared to the others.

• drifts Similar to the clustering benchmark, but the amplitudes of the cells are drifting in time, with
random slopes

4.3.7 Validating

This method allows to compare the performance of the algorithm to those of a optimized classifier. This is an im-
plementation of the BEER (Best Ellipsoidal Error Rate) estimate, as described in [Harris et al, 2000]. Note that the
implementation is slightly more generic, and requires the installation of sklearn. To use it, you need to have, if your
datafile is mydata.extension, a file named mydata/mydata.npy which is simply an array of all the ground
truth spike times. To know more about the BEER estimate, see the devoted documentation (see More on the BEER
estimate)

4.4 Details of the algorithm

The full details of the algorithm have not been published yet, so we will only draft here the key principles and describe
the ideas behind the four key steps of the algorithm. If you can not wait and really would like to know more about all
its parameters, please get in touch with pierre.yger@inserm.fr

Note: A full publication showing details/results of the algorithm is available at http://biorxiv.org/content/early/2016/
08/04/067843

4.4.1 Filtering

In this first step, nothing incredibly fancy is happening. All the channels are high-pass filtered in order to remove
fluctuations, and to do so, we used a classical third order Butterworth filter. This step is required for the algorithm to
work.

4.4.2 Whitening

In this step, we are removing the spurious spatio-temporal correlations that may exist between all the channels. By
detecting temporal periods in the data without any spikes, we compute a spatial matrix and a temporal filter that are
whitening the data. This is a key step in most signal processing algorithms.

Warning: Because of this transformation, all the templates and data that are seen after in the MATLAB GUI are
in fact seen in this whitened space.

4.4.3 Clustering

This is the main step of the algorithm, the one that allows it to perform a good clustering in a high dimensional space,
with a smart sub sampling.

4.4. Details of the algorithm 71

http://robotics.caltech.edu/~zoran/Reading/buzsaki00.pdf
mailto:pierre.yger@inserm.fr
http://biorxiv.org/content/early/2016/08/04/067843
http://biorxiv.org/content/early/2016/08/04/067843
http://fr.mathworks.com/products/matlab/

SpyKING CIRCUS Documentation, Release 0.8.2

Fig. 1: Raw vs. Filtered data

A divide and conquer approach

First, we split the problem by pooling spikes per electrodes, such that we can perform N independent clusterings (one
per electrode), instead of a giant one. By doing so, the problem becomes intrinsically parallel, and one could easily
use MPI to split the load over several nodes.

A smart and robust clustering

We expanded on recent clustering technique [Rodriguez et Laio, 2014] and designed a fully automated method for
clustering the data without being biased by density peaks. In fact, the good point about the template matching approach
that we are using is that we just need the averaged waveforms, so we don’t need to perform a clustering on all the
spikes. Therefore, we can cluster only on a subset of all the spikes. They key point is to get a correct subset. Imagine
that you have two cells next to the same electrode, but one firing way more than the other. If you are just subsampling
by picking random spikes next to that electrode, you are likely to miss the under-represented neuron. The code is
able to solve this issue, and perform what we call a smart search of spikes in order to subsample. Details should be
published soon.

4.4.4 Fitting

The fitting procedure is a greedy template matching algorithm, inspired by the following publication [Marre et al,
2012]. The signal is reconstructed as a linear sum of the templates, and therefore, it can solve the problem of overlap-
ping spikes. The good point of such an algorithm is that small temporal chunks can be processed individually (allowing
to split the load among several computing units), and that most of the operations performed are matrix operations, thus
this can gain a lot from the computing power of modern GPUs.

4.5 Generated Files

In this section, we will review the different files that are generated by the algorithm, and at the end of which step.
In all the following, we will assume that the data are path/mydata.extension. All data are generated in the

72 Chapter 4. Advanced Informations

http://www.sciencemag.org/content/344/6191/1492.short
http://http://www.jneurosci.org/content/32/43/14859.abstract
http://http://www.jneurosci.org/content/32/43/14859.abstract

SpyKING CIRCUS Documentation, Release 0.8.2

Fig. 2: Temporal matrix to perform the whitening of the data for 24 electrodes

4.5. Generated Files 73

SpyKING CIRCUS Documentation, Release 0.8.2

Fig. 3: Every spikes is assigned to only one given electrode, such that we can split the clustering problem into N
independent clusterings.

Fig. 4: Clustering with smart subsampling in a high dimensional space, leading to spatio-temporal templates for
spiking activity triggered on the recording electrodes

74 Chapter 4. Advanced Informations

SpyKING CIRCUS Documentation, Release 0.8.2

Fig. 5: Raw trace on a given electrode and superimposed templates in red. Each time the detection threshold (in dash
dotted line) is crossed, the code lookup in the dictionary of template if a match can be found.

path path/mydata/. To know more about what is performed during the different steps of the algorithm, please see
details on the algorithm, or wait for the publication.

4.5.1 Whitening

At the end of that step, a single HDF5 file mydata.basis.hdf5 is produced, containing several objects

• /thresholds the N thresholds, for all N electrodes. Note that values are positive, and should be multiply by
the threshold parameter in the configuration file (see documentation on parameters)

• /spatial The spatial matrix used for whitening the data (size N x N)

• /temporal The temporal filter used for whitening the data (size Nt if Nt is the temporal width of the template)

• /proj and /rec The projection matrix obtained by PCA, and also its inverse, to represent a single waveform.
(Size Nt x F if F is the number of features kept (5 by default))

• /waveforms 1000 randomly chosen waveforms over all channels

4.5.2 Clustering

At the end of that step, several files are produced

• mydata.clusters.hdf5 A HDF5 file that will encapsulates a lot of informations about the clusters,
for every electrodes. What were the points selected, the spike times of those points, what was the labels
assigned by the clustering, and also the rho and delta values resulting of the clustering algorithm used
[Rodriguez et Laio, 2014]. To be more precise, the file has the following fields

– /data_i: the data points collected on electrode i, after PCA

– /clusters_i: the labels of those points after clustering

4.5. Generated Files 75

https://www.hdfgroup.org/HDF5/
https://www.hdfgroup.org/HDF5/
http://www.sciencemag.org/content/344/6191/1492.short

SpyKING CIRCUS Documentation, Release 0.8.2

– /times_i: the spike times at which those spikes are

– /debug_i: a 2D array with rhos and deltas for those points (see clustering algorithm)

– /electrodes: an array with the prefered electrodes of all K templates

• mydata.templates.hdf5 A HDF5 file storing all the templates, and also their orthogonal projec-
tions. So this matrix has a size that is twice the number of templates 2k. Only the first k elements are
the real templates. Note also that every templates has a given range of allowed amplitudes limits, and
we are also saving the norms norms for internal purposes. To be more precise, the file has the following
fields

– /temp_shape: the dimension of the template matrix N x Nt x 2K if N is the number of electrodes,
Nt the temporal width of the templates, and K the number of templates. Only the first K components
are real templates

– /temp_x: the x values to reconstruct the sparse matrix

– /temp_y: the y values to reconstruct the sparse matrix

– /temp_data: the values to reconstruct the sparse matrix

– /norms : the 2K norms of all templates

– /limits: the K limits [amin, amax] of the real templates

– /maxoverlap: a K x K matrix with only the maximum value of the overlaps accross the temporal
dimension

– /maxlag: a K x K matrix with the indices leading to the maxoverlap values obtained. In a
nutshell, for all pairs of templates, those are the temporal shifts leading to the maximum of the cross-
correlation between templates

• mydata.overlap.hdf5 A HDF5 file used internally during the fitting procedure. This file can be
pretty big, and is also saved using a sparse structure. To be more precise, the file has the following fields

– /over_shape: the dimension of the overlap matrix 2K x 2K x 2Nt - 1 if K is the number of
templates, and Nt the temporal width of the templates

– /over_x: the x values to reconstruct the sparse matrix

– /over_y: the y values to reconstruct the sparse matrix

– /over_data: the values to reconstruct the sparse matrix

4.5.3 Fitting

At the end of that step, a single HDF5 file mydata.result.hdf5 is produced, containing several objects

• /spiketimes/temp_i for a template i, the times at which this particular template has been fitted.

• /amplitudes/temp_i for a template i, the amplitudes used at the given spike times. Note that those ampli-
tudes has two component, but only the first one is relevant. The second one is the one used for the orthogonal
template, and does not need to be analyzed.

• /gspikes/elec_i if the collect_all mode was activated, then for electrode i, the times at which spikes
peaking there have not been fitted.

Note: Spike times are saved in time steps

76 Chapter 4. Advanced Informations

https://www.hdfgroup.org/HDF5/
https://www.hdfgroup.org/HDF5/
https://www.hdfgroup.org/HDF5/

SpyKING CIRCUS Documentation, Release 0.8.2

4.5.4 Converting

At the end of that step, several numpy files are produced in a path path/mydata.GUI. They are all related to phy,
so see the devoted documentation

4.6 GUI without SpyKING CIRCUS

4.6.1 MATLAB

You may need to launch the MATLAB GUI on a personal laptop, where the data were not processed by the software
itself, so where you only have MATLAB and SpyKING CIRCUS is not installed. This is feasible with the following
procedure:

• Copy the the result folder mydata on your computer

• Create a MATLAB mapping for the probe you used, i.e. mapping.hdf5 (see the following procedure below
to create it)

• Open MATLAB

• Set the folder circus/matlab_GUI as the default path

• Launch the following command SortingGUI(sampling, 'mydata/mydata', '.mat',
'mapping.hdf5', 2)

You just need to copy the following code snippet into a file generate_mapping.py.

import sys, os, numpy, h5py

probe_file = os.path.abspath(sys.argv[1])

def generate_matlab_mapping(probe):
p = {}
positions = []
nodes = []
for key in probe['channel_groups'].keys():

p.update(probe['channel_groups'][key]['geometry'])
nodes += probe['channel_groups'][key]['channels']
positions += [p[channel] for channel in probe['channel_groups'][key]['channels

→˓']]
idx = numpy.argsort(nodes)
positions = numpy.array(positions)[idx]

t = "mapping.hdf5"
cfile = h5py.File(t, 'w')
to_write = {'positions' : positions/10., 'permutation' : numpy.sort(nodes), 'nb_

→˓total' : numpy.array([probe['total_nb_channels']])}
for key in ['positions', 'permutation', 'nb_total']:

cfile.create_dataset(key, data=to_write[key])
cfile.close()
return t

probe = {}
with open(probe_file, 'r') as f:

probetext = f.read()
exec probetext in probe

(continues on next page)

4.6. GUI without SpyKING CIRCUS 77

http://www.numpy.org/
https://github.com/cortex-lab/phy
http://fr.mathworks.com/products/matlab/
http://fr.mathworks.com/products/matlab/

SpyKING CIRCUS Documentation, Release 0.8.2

(continued from previous page)

mapping = generate_matlab_mapping(probe)

And then simply launch:

>> python generate_mapping.py yourprobe.prb

Once this is done, you should see a file mapping.hdf5 in the directory where you launch the command. This is the
MATLAB mapping.

Note: If you do not have h5py installed on your machine, launch this script on the machine where SpyKING
CIRCUS has been launched

4.6.2 phy

After the converting step, you must have a folder mydata/mydata.GUI. You simply need to copy this folder
onto a computer without SpyKING CIRCUS, but only phy_ and phylib_. In this folder, you should see a file params.
py, generated during the converting step. So in a terminal, you simply need to go to this folder, and launch from
a terminal:

>> phy template-gui params.py

If the raw data are not found, the Traceview will not be displayed. If you really want to see that view, remember that
you need to get the raw data filtered, so you must also copy them back from your sorting machine.

4.7 Example scripts

On this page, you will be very simple example of scripts to load/play a bit with the raw results, either in Python or in
Matlab. This is not exhaustive, this is simply an example to show you how you can integrate your own workflow on
the results.

Warning: Note that in Python templates (i.e. cells) indices start at 0, while they start at 1 in MATLAB.

4.7.1 Display a template

If you want to display the particular template i, as a 2D matrix of size 𝑁𝑒 x 𝑁𝑡 (respectively the number of channels
and the temporal width of your template)

Python

from circus.shared.parser import CircusParser
from circus.shared.files import load_data
from pylab import *
params = CircusParser('yourdatafile.dat')
N_e = params.getint('data', 'N_e') # The number of channels
N_t = params.getint('data', 'N_t') # The temporal width of the template

(continues on next page)

78 Chapter 4. Advanced Informations

http://fr.mathworks.com/products/matlab/

SpyKING CIRCUS Documentation, Release 0.8.2

(continued from previous page)

templates = load_data(params, 'templates') # To load the templates
temp_i = templates[:, i].toarray().reshape(N_e, N_t) # To read the template i as a 2D
→˓matrix
imshow(temp_i, aspect='auto')

Matlab

tmpfile = 'yourdata/yourdata.templates.hdf5';
templates_size = double(h5read(tmpfile, '/temp_shape'));
N_e = templates_size(2);
N_t = templates_size(1);
temp_x = double(h5read(tmpfile, '/temp_x') + 1);
temp_y = double(h5read(tmpfile, '/temp_y') + 1);
temp_z = double(h5read(tmpfile, '/temp_data'));
templates = sparse(temp_x, temp_y, temp_z, templates_size(1)*templates_size(2),
→˓templates_size(3));
templates_size = [templates_size(1) templates_size(2) templates_size(3)/2];
temp_i = full(reshape(templates(:, tmpnum), templates_size(2), templates_size(1)))';
imshow(temp_i)

4.7.2 Compute ISI

If you want to compute the inter-spike intervals of cell i

Python

from circus.shared.parser import CircusParser
from circus.shared.files import load_data
from pylab import *
params = CircusParser('yourdatafile.dat')
results = load_data(params, 'results')
spikes = results['spiketimes']['temp_i']
isis = numpy.diff(spikes)
hist(isis)

Matlab

tmpfile = 'yourdata/yourdata.results.hdf5';
spikes = double(h5read(tmpfile, '/spiketimes/temp_i'));
isis = diff(spikes);
hist(isis)

4.7.3 Display the amplitude over time for a given template

If you want to show a plot of cell i spike times vs. amplitudes

4.7. Example scripts 79

SpyKING CIRCUS Documentation, Release 0.8.2

Python

from circus.shared.parser import CircusParser
from circus.shared.files import load_data
from pylab import *
params = CircusParser('yourdatafile.dat')
results = load_data(params, 'results')
spikes = results['spiketimes']['temp_i']
amps = results['amplitudes']['temp_i'][:, 0] # The second column are amplitude
→˓for orthogonal, not needed
plot(spikes, amps, '.')

Matlab

tmpfile = 'yourdata/yourdata.results.hdf5';
spikes = double(h5read(tmpfile, '/spiketimes/temp_i'));
amps = double(h5read(tmpfile, '/amplitudes/temp_i')(:,1));
plot(spikes, amps, '.')

4.8 Launching the tests

The code has now a dedicated test suite, that will not only test that the code can be launched, but it will also perform
some stress tests that will convince you that the code is doing things right. In order to launch the tests, you simply
need to do:

>> nosetests tests/

If you have nose installed. You can also only launch some particular tests only:

>> nosetests tests/test_complete_workflow.py

Note: The test suite is taking some time, because various datasets are generated and processed, so you should not be
in a hurry.

4.8.1 What is performed

When you are launching the tests, the code will generate a completely artificial datasets of 5min at 20kHz, composed
of some templates with Gaussian noise, on 30 channels. This source dataset is saved in tests/data/data.dat.

Note: If you copy your own dataset in tests/data, then the tests will use it!

4.8.2 What to see

At the end of every tests, some particular datasets generated using the benchmarking mode are stored in tests/
synthetic/, and plots are generated in tests/plots/

80 Chapter 4. Advanced Informations

SpyKING CIRCUS Documentation, Release 0.8.2

Fig. 6: Plots of the tests for the complete workflow. 25 templates at various rates/amplitudes are injected into the
source datasets, and performance are shown here.

4.8. Launching the tests 81

SpyKING CIRCUS Documentation, Release 0.8.2

4.9 BEER estimate

4.9.1 Validating

The code comes with an integrated way to measure the optimal performance of any spike sorting algorithm, given the
spike times of a ground truth neuron present in the recording. This can be used by doing:

>> spyking-circus mydata.extension -m validating

To use it, you need to have, if your datafile is mydata.extension, a file named mydata/mydata.juxta.dat
which is the juxta-cellular signal recorded next to your extracelullar channels. Note that if you have simply the spike
times, there is a way to bypass this.

4.9.2 BEER estimate

In a nutshell, to quantify the performance the software with real ground-truth recordings, the code can compute the
Best Ellispsiodal Error Rate (BEER), as described in [Harris et al, 2000]. This BEER estimate gives an upper bound
on the performance of any clustering-based spike sorting method using elliptical cluster boundaries, such as the one
described in our paper. After thresholding and feature extraction, the windowed segments of the trace are labelled
according to whether or not they contained a true spike. Half of this labelled data set is then used to train a perceptron
whose decision rule is a linear combination of all pairwise products of the features of each segment, and is thus capable
of achieving any elliptical decision boundary. This decision boundary is then used to predict the occurrence of spikes
in the segments in the remaining half of the labelled data, and the success or failure of these predictions then provide
an estimate of the miss and false positive rates.

The code will generate a file mydata/mydata.beer.dat storing all the needed information, and will produce
several plots.

If you are interested by using such a feature, please contact us!

82 Chapter 4. Advanced Informations

http://robotics.caltech.edu/~zoran/Reading/buzsaki00.pdf

SpyKING CIRCUS Documentation, Release 0.8.2

Fig. 7: Distribution of the number of juxta-cellular spikes as function of the detection thresholds (to know where it has
to be defined)

4.9. BEER estimate 83

SpyKING CIRCUS Documentation, Release 0.8.2

Fig. 8: ISI and mean waveforms triggered by the juxta-cellular spikes

84 Chapter 4. Advanced Informations

SpyKING CIRCUS Documentation, Release 0.8.2

Fig. 9: Decision boundaries of the BEER classifier before and after learning.

4.9. BEER estimate 85

SpyKING CIRCUS Documentation, Release 0.8.2

Fig. 10: The complete ROC curve for the classifier, and all the templates found by the algorithm, superimposed.

86 Chapter 4. Advanced Informations

CHAPTER 5

Known issues

In this section, you will find all information you need about possible bugs/comments we got from users. The most
common questions are listed in the FAQ, or you may have a look to more specialized sections

5.1 Frequently Asked Questions

Here are some questions that are popping up regularly. You can ask some or get answers on our Google Group
https://groups.google.com/forum/#!forum/spyking-circus-users

• I can not install the software

Note: Be sure to have the latest version from the git folder. We are doing our best to improve the packaging and be
sure that the code is working on all platforms, but please be in touch we us if you encounter any issues

• Is is working with Python 3?

Note: Yes, the code is compatible with Python 3

• The data displayed do not make any sense

Note: Are you sure that the data are properly loaded? (see data section of the parameter file, especially
data_dtype, data_header). Test everything with the preview mode by doing:

>> spyking-circus mydata.extension -p

• Can I process single channel datasets, or coming from not so-dense electrodes?

87

https://groups.google.com/forum/#!forum/spyking-circus-users

SpyKING CIRCUS Documentation, Release 0.8.2

Note: Yes, the code can handle spikes that will occur only on a single channel, and not on a large subset. However,
you may want to set the cc_merge parameter in the [clustering] section to 1, to prevent any global merges.
Those global merges are indeed performed automatically by the algorithm, before the fitting phase. It assumes that
templates that are similar, up to a scaling factor, can be merged because they are likely to reflect bursting neurons.
But for few channels, where spatial information can not really be used to disentangle templates, the amplitude is a key
factor that you want to keep. Also, you may need to turn on the smart_search mode in the clustering section,
because as you have few channels, you want to collect spikes efficiently.

• Something is wrong with the filtering

Note: Be sure to check that you are not messing around with the filter_done flag, that should be automatically
changed when you perform the filtering. You can read the troubleshooting section on the filtering here

• I see too many clusters, at the end, that should have been split

Note: The main parameters that you can change will be cc_merge and sim_same_elec in the [clustering]
section. They are controlling the number of local (i.e. per electrode) and global (i.e. across the whole probe layout)
merges of templates that are performed before the fitting procedure is launched. By reducing sim_same_elec (can
not be less than 0), you reduce the local merges, and by increasing cc_merge (can not be more than 1), you reduce
the global merges. A first recommendation would be to set cc_merge to 1. You might also want to turn on the
smart_search parameter in the clustering section. This will force a smarter collection of the spikes, based on
rejection methods, and thus should improve the quality of the clustering.

• Memory usage is saturating for thousands of channels

Note: If you have a very large number of channels (>1000), then the default size of 60s for all the data blocks loaded
into memory during the different steps of the algorithm may be too big. In the whitening section, you can at least
change it by setting chunk_size to a smaller value (for example 10s), but this may not be enough. If you want the
code to always load smaller blocks during all steps of the algorithm clustering, filtering, then you need to
add this chunk_size parameter into the data section.

• How do I read the templates in Python?

Note: Templates are saved as a sparse matrix, but you can easily get access to them. For example if you want to read
the template i, you have to do

from circus.shared.files import *
params = load_parameters('yourdatafile.dat')
N_e = params.getint('data', 'N_e') # The number of channels
N_t = params.getint('data', 'N_t') # The temporal width of the template
templates = load_data(params, 'templates') # To load the templates
temp_i = templates[:, i].toarray().reshape(N_e, N_t) # To read the template i as a 2D
→˓matrix

To know more about how to play with the data, and build your own analysis, either in Python or MATLAB you can go
to our dedicated section on analysis

• After merging templates with the Meta Merging GUI, waveforms are not aligned

88 Chapter 5. Known issues

http://fr.mathworks.com/products/matlab/

SpyKING CIRCUS Documentation, Release 0.8.2

Note: By default, the merges do not correct for the temporal lag that may exist between two templates. For example,
if you are detecting both positive and negative peaks in your recordings, you may end up with time shifted copies of
the same template. This is because if the template is large enough, crossing both positive and negative thresholds at the
same time, the code will collect positive and negative spikes, leading to twice the same template, misaligned. We are
doing our best, at the end of the clustering step, to automatically merge those duplicates based on the cross-correlation
(see parameter cc_merge). However, if the lag between the two extrema is too large, or if they are slightly different,
the templates may not be fused. This situation will bring a graphical issue in the phy GUI, while reviewing the result:
if the user decided in the Meta Merging GUI to merge the templates, the waveforms will not be properly aligned. To
deal with that, you simply must to set the correct_lag parameter in the [merging] section to True. Note that
such a correction can not be done for merges performed in phy.

5.2 Filtering

The filtering is performed once, on the data, without any copy. This has pros and cons. The pros is that this allow the
code to be faster, avoiding filtering on-the-fly the data each time temporal chunks are loaded. The cons is that the user
has to be careful about how this filtering is done.

5.2.1 Wrong parameters

If you filled the parameter files with incorrect values either for the data type, header, or even the number of channels
(i.e. with a wrong probe file), then the filtering is likely to output wrong data in the file itself. If you are facing issues
with the code, always be sure that the informations displayed by the algorithm before any operations are correct, and
that the data are correctly read. To be sure, use the preview GUI before launching the whole algorithm (see Python
GUI):

>> spyking-circus mydata.extension -p

5.2.2 Interruption of the filtering

The filtering is performed in parallel by several nodes, each of them in charge of a subset of all the temporal chunks.
This means that if any of them is failing because of a crash, or if the filtering is interupted by any means, then you
have to copy again the entire raw file and start again. Otherwise, you are likely to filter twice some subparts of the
data, leading to wrong results

5.2.3 Flag filter_done

To let the code know that the filtering has been performed, you can notice at the bottom of the configuration file a flag
filter_done that is False by default, but that becomes True only after the filtering has been performed. As long
as this parameter files is ketp along with your data, the algorithm, if relaunched, will not refilter the file.

Warning: If you delete the configuration file, but want to keep the same filtered data, then think about setting this
flag manually to True

5.2. Filtering 89

https://github.com/cortex-lab/phy
https://github.com/cortex-lab/phy

SpyKING CIRCUS Documentation, Release 0.8.2

5.3 Whitening

5.3.1 No silences are detected

This section should be pretty robust, and the only error that you could get is a message saying that no silence were
detected. If this is the case, this is likely that the parameters are wrong, and that the data are not properly understood.
Be sure that your data are properly loaded by using the preview mode:

>> spyking-circus mydata.extension -p

If this is the case, please try to reduce the safety_time value. If no silences are detected, then your data may not
be properly loaded.

5.3.2 Whitening is disabled because of NaNs

Again, this should be rare, and if this warning happens, you may try to get rid of this warning by changing the
parameters of the whitening section. Try for example to increase safety_time for example to 3, or try to
change the value of chunk_size. We may enhance the robustness of the whitening in future releases.

90 Chapter 5. Known issues

CHAPTER 6

Citations

6.1 How to cite SpyKING CIRCUS

Note: If you are using SpyKING CIRCUS for your project, please cite us

• Yger P., Spampinato, G.L.B, Esposito E., Lefebvre B., Deny S., Gardella C., Stimberg M., Jetter F., Zeck G.
Picaud S., Duebel J., Marre O., A spike sorting toolbox for up to thousands of electrodes validated with ground
truth recordings in vitro and in vivo, eLife 2018;7:e34518

6.2 Publications refering to SpyKING CIRCUS

Here is a non exhaustive list of papers using SpyKING CIRCUS. Do not hesitate to send us a mail in order update this
list, the more the merrier

6.2.1 2019

• Reinhard K., Li C., Do Q., Burke E., Heynderickx S., Farrow K.,*A projection specific logic to sampling visual
inputs in mouse superior colliculus*, bioRxiv 272914; doi: https://doi.org/10.1101/272914

• Fiáth, Richárd, et al., Fine-scale mapping of cortical laminar activity during sleep slow oscillations using high-
density linear silicon probes, Journal of neuroscience methods 316: 58-70

• Heiney, Kristine, et al. µSpikeHunter: An advanced computational tool for the analysis of neuronal communi-
cation and action potential propagation in microfluidic platforms, Scientific reports 9.1: 5777

• Angotzi, Gian Nicola, et al. SiNAPS: An implantable active pixel sensor CMOS-probe for simultaneous large-
scale neural recordings, Biosensors and Bioelectronics 126: 355-364.

• Williams, Alex H., et al. Discovering precise temporal patterns in large-scale neural recordings through robust
and interpretable time warping, bioRxiv: 661165

91

https://doi.org/10.1101/272914

SpyKING CIRCUS Documentation, Release 0.8.2

• Hennig, M. H., Hurwitz C., Sorbaro M., Scaling Spike Detection and Sorting for Next-Generation Electrophys-
iology, In Vitro Neuronal Networks. Springer, Cham 171-184.

• Carlson D., and Lawrence C., Continuing progress of spike sorting in the era of big data, Current opinion in
neurobiology 55: 90-96

• Souza B. C., Lopes-dos-Santos V., Bacelo J., Tort A. B., Spike sorting with Gaussian mixture models, Scientific
reports, 9(1), 3627

• Gardella C., Marre O., Mora T., Modeling the correlated activity of neural populations: A review, Neural
computation, 31(2), 233-269.

• Dai J., Zhang P., Sun H., Qiao X., Zhao Y., Ma J., Wang, C., Reliability of motor and sensory neural decoding
by threshold crossings for intracortical brain–machine interface, Journal of neural engineering.

• Despouy E., Curot J., Denuelle M., Deudon M., Sol J. C., Lotterie J. A., Valton L., Neuronal spiking activity
highlights a gradient of epileptogenicity in human tuberous sclerosis lesions, Clinical Neurophysiology, 130(4),
537-547.

• Wouters J., Kloosterman F., Bertrand A., A data-driven regularization approach for template matching in spike
sorting with high-density neural probes, In Proceedings of IEEE EMBC. IEEE.

• Weingärtner S., Chen X., Akçakaya M., Moore T., Robust Online Spike Recovery for High-Density Electrode
Recordings using Convolutional Compressed Sensing. In 2019 9th International IEEE/EMBS Conference on
Neural Engineering (NER) (pp. 1015-1020). IEEE.

• Sorochynskyi O., Deny S., Marre O., Ferrari U., From serial to parallel: predicting synchronous firing of large
neural populations from sequential recordings, bioRxiv, 560656.

• Mahmud, M., Vassanelli, S., Open-Source Tools for Processing and Analysis of In Vitro Extracellular Neuronal
Signals. In In Vitro Neuronal Networks (pp. 233-250). Springer, Cham.

• Wouters J., Kloosterman F., Bertrand A., Signal-to-peak-interference ratio maximization with automatic in-
terference weighting for threshold-based spike sorting of high-density neural probe data, In International
IEEE/EMBS Conference on Neural Engineering:[proceedings]. International IEEE EMBS Conference on Neu-
ral Engineering. IEEE.

6.2.2 2018

• Parikh R., Large-scale neuron cell classification of single-channel and multi-channel extracellularrecordings in
the anterior lateral motor cortex, bioRxiv 445700; doi: https://doi.org/10.1101/445700

• Macé E., Montaldo G., Trenholm S., Cowan C., rignall A., Urban A., Roska B., Whole-Brain Functional Ultra-
sound Imaging Reveals Brain Modules for Visuomotor Integration, Neuron, 5:1241-1251

• Aydın C., Couto J., Giugliano M., Farrow K., Bonin V., Locomotion modulates specific functional cell types in
the mouse visual thalamus, Nature Communications, 4882 (2018)

• Belkhiri M., Kvitsiani D., D.sort: template based automatic spike sorting tool, BioRxiv, 10.1101/423913

• Nadian M. H., Karimimehr S., Doostmohammadi J., Ghazizadeh A., Lashgari R., A fully automated spike sorting
algorithm using t-distributed neighbor embedding and density based clustering, BioRxiv, 10.1101/418913

• Ferrari U., Deny S., Chalk M., Tkacik G., Marre O., Mora T, Separating intrinsic interactions from extrinsic
correlations in a network of sensory neurons, BioRxiv, 10.1101/243816

• Jin M., Beck J. M, Glickfeld L., Neuronal adaptation reveals a suboptimal decoding of orientation tuned popu-
lations in the mouse visual cortex, BioRxiv, 10.1101/433722

• Jin M., Glickfeld L., Contribution of sensory encoding to measured bias, BioRxiv, 10.1101/444430

92 Chapter 6. Citations

https://doi.org/10.1101/445700

SpyKING CIRCUS Documentation, Release 0.8.2

• Lazarevich I., Prokin I., Gutkin B., Neural activity classification with machine learning models trained on
interspike interval series data, arXiv, 1810.03855

• Radosevic M., Willumsen A., Petersen P. C., Linden H., Vestergaard M., Berg R. W. Decoupling of timescales
reveals sparse convergent CPG network in the adult spinal cord, BiorXiv, 402917

• Chaure F, Rey HG, Quian Quiroga R, A novel and fully automatic spike sorting implementation with variable
number of features, J Neurophysiol. 10.1152/jn.00339.2018

• Ravello C., Perrinet L. U, Escobar M.-J., Palacios A. G, Speed-Selectivity in Retinal Ganglion Cells is Modu-
lated by the Complexity of the Visual Stimulus, BioRxiv, 350330

• Wouters J, Kloosterman F., Bertrand A, Towards online spike sorting for high-density neural probes using
discriminative template matching with suppression of interfering spikes, Journal of Neural Engineering, 1741-
2552

• Vilarchao M. E., Estebanez L., Shulz D. E., Férezou I., Supra-barrel Distribution of Directional Tuning for
Global Motion in the Mouse Somatosensory Cortex, Cell Reports 22, 3534–3547

• Barth A. M., Domonkos A., Fernandez-Ruiz A., Freund T.F., Varga V., Hippocampal Network Dynamics during
Rearing Episodes, Cell Reports, 23(6):1706-1715

• Steinmetz N. A., Koch C., Harris K.D., Carandini M., Challenges and opportunities for large-scale electrophys-
iology with Neuropixels probes, Current Opinion in Neurobiology, Volume 50, 92-100

• Stern M., Bolding K. A. , Abbott L. F., Franks K. M, A transformation from temporal to ensemble coding in a
model of piriform cortex, eLife, 10.7554/eLife.34831

• Bolding K. A., Franks K. M. , Recurrent cortical circuits implement concentration-invariant odor coding, Sci-
ence, 361(6407)

• Escobar M.-J., Otero M., Reyes C., Herzog R., Araya J., Ibaceta C., Palacios A. G., Functional Asymmetries
between Central and Peripheral Retinal Ganglion Cells in a Diurnal Rodent, BioRxiv, 277814

• Wouters J., Kloosterman F., Bertrand A., Data-driven multi-channel filter design with peak-interference sup-
pression for threshold-based spike sorting in high-density neural probes, IEEE International Conference on
Acoustics, Speech and Signal processing (ICASSP)

6.2.3 2017

• Paninski L., Cunningham J., Neural data science: accelerating the experiment-analysis-theory cycle in large-
scale neuroscience, BioRxiv, 196949

• Lee J., Carlson D., Shokri H., Yao W., Goetz G., Hagen E., Batty E., Chichilnisky E.J., Einevoll G., Paninski
L., YASS: Yet Another Spike Sorter, BioRxiv, 151928

• Shan K. Q., Lubenov E. V., Siapas A. G., Model-based spike sorting with a mixture of drifting t-distributions,
Journal of Neuroscience Methods, 288, 82-98

• Deny S., Ferrari U., Mace E., Yger P., Caplette R., Picaud S., Tkacik G., Marre O., Multiplexed computations
in retinal ganglion cells of a single type, Nature Communications 10.1038/s41467-017-02159-y

• Chung, J. E., Magland, J. F., Barnett, A. H., Tolosa, V. M., Tooker, A. C., Lee, K. Y., . . . & Greengard, L. F. A
Fully Automated Approach to Spike Sorting, Neuron, 95(6), 1381-1394

• Mena, G. E., Grosberg, L. E., Madugula, S., Hottowy, P., Litke, A., Cunningham, J., . . . & Paninski, L. Electri-
cal stimulus artifact cancellation and neural spike detection on large multi-electrode arrays, PLOS Computa-
tional Biology, 13(11), e1005842.

• Mokri Y., Salazar R.F, Goodell2 B., Baker J., Gray C.M. and Yen S., Sorting Overlapping Spike Waveforms
from Electrode and Tetrode Recordings, Front. Neuroinform.

6.2. Publications refering to SpyKING CIRCUS 93

SpyKING CIRCUS Documentation, Release 0.8.2

• Wilson C.D., Serrano G. O., Koulakov A. A., Rinberg D., A primacy code for odor identity, Nature Communi-
cation, 1477

• Ferrari U., Gardella C., Marre O., Mora T., Closed-loop estimation of retinal network sensitivity reveals signa-
ture of efficient coding, eNeuro, ENEURO.0166-17.2017

• Denman, D. J., Siegle, J. H., Koch, C., Reid, R. C., & Blanche, T. J. Spatial organization of chromatic pathways
in the mouse dorsal lateral geniculate nucleus, Journal of Neuroscience, 37(5), 1102-1116.

6.2.4 2016

• Dimitriadis, G., Neto, J., & Kampff, A. T-SNE visualization of large-scale neural recordings, bioRxiv, 087395.

• Yger P., Spampinato, G.L.B, Esposito E., Lefebvre B., Deny S., Gardella C., Stimberg M., Jetter F., Zeck G.
Picaud S., Duebel J., Marre O., Fast and accurate spike sorting in vitro and in vivo for up to thousands of
electrodes, bioRxiv, 67843

94 Chapter 6. Citations

	Introduction
	Why using it?
	How to get the code
	Installation
	Configuration of MPI
	Release notes
	Future plans and contributions

	Launching the code
	Quickstart
	Parameters
	Designing your probe file
	Configuration File
	Supported File Formats
	Sanity plots
	Processing streams of data
	Dealing with stimulation artefacts
	Automatic Merging

	Using the GUI
	A graphical launcher
	Quick preview GUIs
	Launching the visualization GUIs
	Panels of the GUIs
	Basis of spike sorting

	Advanced Informations
	Choosing the parameters
	Writing your custom file wrapper
	Extra steps
	Details of the algorithm
	Generated Files
	GUI without SpyKING CIRCUS
	Example scripts
	Launching the tests
	BEER estimate

	Known issues
	Frequently Asked Questions
	Filtering
	Whitening

	Citations
	How to cite SpyKING CIRCUS
	Publications refering to SpyKING CIRCUS

